不断发展的业务发展和最新的人工智能 (AI) 使不同的业务实践通过创建新的协作方式的能力得到增强。这种不断发展的技术有助于提供品牌服务,甚至提供一些与客户和员工的新类型的企业互动。AI 数字化同时强调企业专注于现有战略,并定期和尽早寻求新的市场机会。而业务创新框架内的数字技术研究正引起越来越多的关注,并且数据隐私可以通过区块链技术来维护。因此,本文提出了基于人工智能和区块链技术 (BI-AIBT) 的业务创新,以增强业务实践并保持不同客户之间的安全交互。定性经验数据的收集由来自两个不同业务部门的少数主要受访者组成。通过开展和探索数字化对价值开发、提案和业务获取的影响之间的差异和相似性,对 BI-AIBT 进行了评估。此外,组织能力和员工技能互动问题可以通过 BT 得到改善。实验结果表明,数字化转型通常被视为必不可少的,并能改善业务创新战略。提出的数值结果 BI-AIBT 提高了需求预测率(97.1%)、产品质量率(98.3%)、业务发展率(98.9%)、客户行为分析率(96.3%)和客户满意度率(97.2%)。
1。nm等。柳叶刀。2020; 395:1907-1918 2。polack fp和al。n Engel J Med。2020; 383(2703-13。LR等。n Engel J Med。2021。384:403-416 4。asco; 2021 ....5。国家新闻癌网络。nccn; 2021。2021。6。欧洲医学学会。esmo; 2021。7。Xing PE和Al。J免疫疗法癌。 2019; 341。 8。 osta b和al。 提交了摘要免疫疗法。 2016; 27。J免疫疗法癌。2019; 341。8。osta b和al。提交了摘要免疫疗法。2016; 27。
用于空间领域感知应用的加速 AI 驱动大气预测 丹尼·费尔顿 诺斯罗普·格鲁曼公司 玛丽·艾伦·克拉多克、希瑟·凯利、兰德尔·J·阿利斯、埃里克·佩奇、杜安·阿普林 诺斯罗普·格鲁曼公司 摘要 太空激光和监视应用经常受到大气效应的影响。气溶胶、云和光学湍流引起的大气衰减和扭曲会产生有害影响,从而对任务结果产生负面影响。2019 年 AMOS 会议上简要介绍的一篇论文介绍了 2017 年在哈莱阿卡拉峰安装的地面仪器。这些仪器仍在积极收集数据,它们正在提供前所未有的空间环境实时表征,包括精确的大气传输损耗。虽然实时测量是理解和表征空间环境的第一步,但仅靠它们是不够的。为了优化任务规划,许多应用都需要对空间环境进行准确的短期大气预测。虽然大气预报并不是什么新鲜事,但最近随着 21 世纪人工智能 (AI) 技术的应用,大气预报的技能得到了极大提升。这些技术是高性能计算 (HPC) 和深度学习 (DL) 的结合。本演讲的主题是使用来自地面大气收集系统的 TB 级数据训练预测模型,并使用图形处理单元 (GPU) 加速其训练和推理的能力。本研究侧重于预测的三个时间尺度。这些时间尺度包括短期(0 到 60 分钟)、中期(1 小时到 3 小时)和长期(3 到 48 小时)。这些时间尺度代表激光和/或监视应用和任务的各种决策点。在短期预测情况下,多种 DL 技术应用于从光学地面站 (OGS) 收集的本地数据。这些 DL 技术包括使用 U-Net 卷积神经网络和多层感知器 (MLP) 和随机森林 (RF) 模型的集合。 MLP 用于从激光云高仪和红外云成像仪 (ICI) 等仪器收集的点数据。对于中间时间尺度,卷积长短期记忆 (LSTM) 网络和 U-Net 均使用来自 NOAA 地球静止卫星云图集合的图像进行训练。最后,组合 U-Net 和自动编码器神经网络用于训练由 HPC 数值天气预报 (NWP) 模型模拟的大气预测器以进行长期预测。NWP 会产生许多 TB 的数据,因此,使用这些神经网络是优化其预测能力的理想选择。本研究利用了多种 HPC 资源。其中包括由四个 NVIDIA Tesla V100 GPU 组成的内部 GPU 节点以及毛伊高性能计算中心 (MHPCC) 的资源。结果表明,在几乎所有情况下,这些预测技术都优于持久性,而且偏差很小。使用 HPC 和 DL 推理实时进行预测的能力是未来的重点,将在会议上报告。1. 简介大气衰减和失真降低了太空激光和监视应用的功效。特别是,云层可以部分或完全遮挡目标,并阻止或要求降低光通信系统的数据速率。但是,通过准确表征和预测大气影响,可以减轻许多负面影响。本研究的目的是开发和完善一种最先进的大气预测系统,该系统可生成高分辨率的大气衰减预测,以支持太空激光和监视应用的决策辅助。为了实现这一目标,HPC 和 AI 的进步与数 TB 的高分辨率地面和太空大气数据集合相结合。多种 HPC 资源用于处理本研究所需的地面和卫星数据,并使用四个 NVIDIA Tesla V100 GPU 加速 AI 预测技术的训练和推理。该技术用于进行多时间尺度大气预测:1 小时预测、2 小时以上预测和 48 小时预测。最长 1 小时;最长 2+ 小时;最长 48 小时。最长 1 小时;最长 2+ 小时;最长 48 小时。
2021 年 7 月 18 日——新加坡武装部队 (SAF)。生物战剂等非常规威胁也受到了关注。例如,9 月 11 日恐怖袭击事件发生后不久……
必须在不同的数据源上执行大量复杂过程。这些过程经常受到外部机构的监管和审计,这使情况变得更加复杂。然而,一个老问题仍然存在:什么应该机器人化,什么应该由人类完成?本文旨在在用于在复杂过程中做出决策的数据分析任务的背景下部分回答这个问题。这项研究是基于一个软件机器人(RPA)中融入的人工智能方法进行的,该机器人自动获取数据,处理和分析这些数据,帮助人类专业人员在此过程中做出决策。它被应用于一个对验证研究很重要的真实案例过程。在数据分析中测试了四种方法,但实际上只使用了两种。机器人分析了来自能耗表的一系列信息。通过与仪表数据系列进行比较,可以检测仪表数据中可能的行为偏差。机器人能够对能耗数据中检测到的事件进行优先排序,向人类操作员指出需要注意的最关键情况。人工智能和 RPA 的结合是可行的,并且可以真正为公司和团队带来重要的好处,重视人类的工作并为流程带来更高的效率。
在格鲁维尔学校学习机会 - 我们提供什么?我们在格鲁维尔学校的课程愿景,我们相信所有学生都应该接受最高质量的教育,这会引起,启发和挑战,以便每个人在学术成就和福祉方面都具有全部的潜力。我们努力创造一个安全而快乐的学习环境,从而促进了所有人的独立性和高期望。我们致力于提供机会,以促进对我们富有和多样化的岛屿社区的开放思维,同情和庆祝;这样每个人都可以为社会做出积极贡献。我们致力于促进健康的生活方式选择,以便我们的学生在身体,情感,精神和道德上发展。我们确定我们的学生将取得成功,并将使我们成为社区的自信,高度负责的成员。我们通过:•通过高质量的教学提高成就,从而激发和激励;有抱负的
医学研究中人工智能的报告指南 J. Peter Campbell, MD, MPH、Aaron Y Lee, MD, MSCI、Michael Abràmoff, MD、Pearse A. Keane, MD, FRCOphth、Daniel SW Ting, MD PhD 和 Michael F. Chiang, MD 资金支持:JPC 和 MFC 得到美国国立卫生研究院 (马里兰州贝塞斯达) 的 R01EY19474、R01EY031331、K12EY027720 和 P30EY10572 的支持;以及防盲研究 (JPC) 的无限制部门资金和职业发展奖的支持。AYL 得到 NIH/NEI K23EY029246、NIH P30EY10572 和防盲研究的无限制拨款的支持。赞助商/资助组织未参与本研究的设计或实施。财务披露:Michael D Abramoff,IDx(I、F、E、P、S)、Alimera(F)。J. Peter Campbell,Genentech(F)。Aaron Y Lee,美国 FDA(E)、Genentech(C)、Topcon(C)、Verana Health(C)、Santen(F)、Novartis(F)、Carl Zeiss Meditec(F)。Pearse A. Keane,DeepMind Technologies(C)、Roche(C)、Novartis(C)、Apellis(C)、Bayer(F)、Allergan(F)、Topcon(F)、Heidelberg Engineering(F)。Daniel Ting,EyRIS(IP)、Novartis(C)、Ocutrx(I、C)、Optomed(C)。通讯作者:Michael F Chiang 地址?联系方式?
https://www.canada.ca/dam/dam-aspc/documents/immery-interchang-interchang-autorchang-autorized-covid.pdf https://www.mrxiv.org/content/mining/early/2021/06/2021/2021.05.19.19.19.19 3_june_2021_sars-cov-cov-cov-2_dopd_dourshttps://www.canada.ca/dam/dam-aspc/documents/immery-interchang-interchang-autorchang-autorized-covid.pdf https://www.mrxiv.org/content/mining/early/2021/06/2021/2021.05.19.19.19.193_june_2021_sars-cov-cov-cov-2_dopd_dours
许多公司提供 AI 驱动的软件平台,用于对临床测序数据(例如 NGS、WES、WGS)进行基因组分析和解释,例如使用 VCF 文件作为输入(表 1)。分析任务包括比对、变异解释、变异调用、注释和分析以及文献整理。AI 驱动方法的优势包括大大缩短周转时间并提高诊断产量。还有基于监督学习(例如 ISOWN)、机器学习(例如 BAYSIC、MutationSeq、SNooPer、SomaticSeq)、卷积神经网络(例如 Clairvoyante)、深度卷积神经网络(例如 DeepSea)、深度循环神经网络(例如 Deep Nano)、深度神经网络(例如 DANN)和人工神经网络(例如 Skyhawk)的基于 AI 的变异调用算法(一些可免费获得),这些算法最近都得到了调查和评论(Bohannan and Mitrofanova 2019;Karimnezhad et al 2020;Koboldt 2020;Liu et al 2019;Xu 2018)。
b'摘要。本文提出了将对称密码代数方程转化为QUBO问题的方法。将给定方程f 1 ,f 2 ,... ,fn转化为整数方程f \xe2\x80\xb2 1 ,f \xe2\x80\xb2 2 ,... ,f \xe2\x80\xb2 n后,对每个方程进行线性化,得到f \xe2\x80\xb2 lin i = lin ( f \xe2\x80\xb2 i ),其中lin表示线性化运算。最后,可以得到 QUBO 形式的问题,即 f \xe2\x80\xb2 lin 1 2 + \xc2\xb7 \xc2\xb7 \xc2\xb7 + f \xe2\x80\xb2 lin n 2 + Pen ,其中 Pen 表示在方程线性化过程中获得的惩罚,n 是方程的数量。在本文中,我们展示了一些分组密码转换为 QUBO 问题的示例。此外,我们展示了将完整的 AES-128 密码转换为 QUBO 问题的结果,其中等效 QUBO 问题的变量数量等于 237,915,这意味着,至少在理论上,该问题可以使用 D-Wave Advantage 量子退火计算机解决。不幸的是,很难估计这个过程所需的时间。'