• 在没有大量人为监督的情况下,在变化多端且不可预测的情况下执行任务,或者在接触数据集时可以从经验中学习并提高性能; • 在任何环境下开发,包括但不限于软件或物理硬件,并解决需要类似人类感知、认知、规划、学习、交流或身体动作的任务; • 旨在:像人类一样思考或行动,包括但不限于认知架构或神经网络或理性行动,包括但不限于使用感知、规划、推理、学习、交流、决策或行动实现目标的智能软件代理或具身机器人; • 由一组技术组成,包括但不限于机器学习,旨在近似认知任务。 • 可解释性 – 人工智能系统以人类可以理解的方式表达影响人工智能系统结果的基本因素的属性。 • 大型语言模型 (LLM) – 一种可以识别和生成文本等任务的人工智能程序。LLM 是在大量数据集上进行训练的 – 因此得名“大型”。 LLM 建立在机器学习的基础上:具体来说,是一种称为变换器模型的神经网络。• 机器学习——使用和开发能够在不遵循明确指令的情况下学习和适应的计算机系统,通过使用算法和统计模型来分析和得出推论
• 在没有大量人为监督的情况下,在变化多端且不可预测的情况下执行任务,或者在接触数据集时可以从经验中学习并提高性能; • 在任何环境下开发,包括但不限于软件或物理硬件,并解决需要类似人类感知、认知、规划、学习、交流或身体动作的任务; • 旨在:像人类一样思考或行动。例如,但不限于,显示通过智能软件代理或具象机器人实现感知、规划、推理、学习、交流、决策或行动的认知架构或神经网络; • 由一组技术组成,包括但不限于机器学习,旨在近似认知任务。 • 可解释性 – 人工智能系统的一种属性,用于以人类可以理解的方式表达影响人工智能系统的基本因素。 • 大型语言模型 (LLM) – 一种可以识别和生成文本等任务的人工智能程序。LLM 是在大量数据集上进行训练的 – 因此得名“大型”。 LLM 建立在机器学习的基础上:具体来说,是一种称为变换器模型的神经网络。• 机器学习 - 使用和开发能够在不遵循明确指令的情况下学习和适应的计算机系统,通过使用算法和统计模型来分析数据模式并从中得出推论。
1851 年 1 月,艾伦购买了 Eagle 面粉厂,这是一座该地区具有重要历史意义的工业建筑,Eagle Mills [b] 村庄最终因这座工厂而得名。 [1] 这家工厂有着长期的失败商业尝试。它由丹尼尔·谢尔顿于 1821 年建造,使用特洛伊供应的小麦磨面粉。在短暂的成功之后,业务关闭,建筑闲置。它被卖给了詹姆斯·邦斯特德,后者重新将建筑作为饲料加工厂。他也遇到了麻烦,将建筑卖给了詹姆斯·麦克切斯尼,后者将建筑闲置了一段时间,然后将其转让给卡特林和萨克斯顿,后者开始制造螺旋钻和钻头。同样失败的卡特林和萨克斯顿放弃了生意,詹姆斯·麦克切斯尼(他的名字仍然在契约上)将财产卖给了格鲁姆和沙特克,后者开始制造活动扳手。但这笔交易也失败了,该地产被卖给了附近克罗普西维尔的磨坊主保罗·史密斯 (Paul Smith),史密斯于 1851 年将该地产卖给了艾伦 (Allen),因为史密斯后来决定,他更愿意将他的工厂集中在克罗普西维尔。
• 前导序列:位于 CRISPR 基因座一端的非编码序列(长度为 80-500 个核苷酸),有助于启动 RNA 转录并整合新的入侵者基因组(间隔物)。 • 间隔物:与入侵者(即病毒物质)相匹配的短而独特的 DNA 序列,本质上是原核生物免疫系统的记忆。 • 重复序列:分隔每个间隔物的短而相同的 DNA 序列。它们有规律地间隔开来,通常是回文结构(从 5' 和 3' 方向对称),这就是 CRISPR 这个首字母缩略词的由来“成簇的、有规律间隔的、短回文重复序列”。 位于 CRISPR 阵列附近的是 cas 基因,它们是编码区,用于编码蛋白质复合物的合成,如 Cas 蛋白(因此得名 CRISPR-Cas 系统),Cas 蛋白是一种能够消化 DNA 的核酸酶。当病毒入侵原核生物时,与病毒遗传物质相匹配的 CRISPR 阵列会转录成单个向导 RNA (sgRNA),该 RNA 会与 Cas 蛋白结合并引导其朝向病毒的遗传物质。当 sgRNA 检测到匹配的病毒 DNA 时,Cas 蛋白会裂解/切割 DNA,从而有效地阻止病毒感染。
全球冠状病毒病 (COVID-19) 大流行是由严重急性呼吸综合征冠状病毒 2 (SARS-CoV-2) 引起的。冠状病毒因其病毒衣壳在显微镜下与日冕相似而得名(作者匿名,1968 年),它广泛传播,可引起类似于普通感冒的轻微感染。事实上,所有四种人类冠状病毒:HCoV-OC43、HCoV-HKU-1、HCoV-299E 和 HCoV-NL63,都是地方性的,并在人类中持续传播(Corman 等人,2018 年)。此前已报告过三次冠状病毒疫情,尽管规模远低于 COVID-19 疫情:SARS-CoV-1、MERS-CoV 和冠状病毒 HuPn-2018。与 COVID-19 类似,所有这些都是人畜共患疾病,最初通过动物宿主传播给人类(Ye 等人,2020 年)。与以往的疫情不同,自 2019 年底出现以来,COVID-19 几乎对每个人的生活都造成了巨大的破坏。截至 2022 年 11 月 4 日,COVID-19 已在全球造成 660 万人死亡(Ritchie 等人,2020 年)。巨大的死亡人数和对社会的影响促使人们大规模开展疫苗和抗病毒药物的开发,以预防和对抗 COVID-19。这项研究工作的积极成果毋庸置疑;多种疫苗,例如阿斯利康、Moderna、辉瑞/BioNTech,已经开发出来并投入使用。
ROM 的类型 顾名思义,只读存储器 (ROM) 包含不可更改的永久数据模式。ROM 是非易失性的;也就是说,无需电源即可保持存储器中的位值。 可编程 ROM (PROM) 与 ROM 一样,PROM 也是非易失性的,只能写入一次。对于 PROM,写入过程以电气方式执行,可以由供应商或客户在原始芯片制造之后的某个时间执行。 光可擦除可编程只读存储器 (EPROM) 和 PROM 一样,以电气方式读取和写入。但是,在写入操作之前,必须通过将封装芯片暴露在紫外线下将所有存储单元擦除为相同的初始状态。 更有吸引力的主要读存储器形式是电可擦除可编程只读存储器 (EEPROM)。这是一种主要读存储器,可以随时写入而不会擦除之前的内容;只更新寻址的字节或字节。写入操作比读取操作花费的时间长得多,大约为每字节几百微秒。另一种半导体存储器是闪存(因其重新编程速度快而得名)。闪存于 20 世纪 80 年代中期首次推出,在成本和功能上介于 EPROM 和 EEPROM 之间。与 EEPROM 一样,闪存使用电擦除技术。一整块闪存可以在一秒或几秒内被擦除,这比 EPROM 快得多。
引言马豆 (Macrotyloma uniflorum (Lam.) Verdc.) 是一种耐寒的半干旱热带豆类作物,对其研究甚少。尽管马豆在印度很大一部分人口的饮食中具有当前和历史重要性,但人们对它存在着根深蒂固的偏见,因为它被认为是穷人的低等食物,尤其是在印度南部 (Kadam 等人,1985 年;Ambasta,1986 年)。对这种作物的科学认识有限,这从教科书中对其地位的描述中可以看出,即使是在其主要生产国印度出版的教科书中也是如此。马豆的研究远少于地位较高的豆类,如印度豇豆 (V. radiata (L.) Wilczek、V. mungo (L.) Hepper) 或木豆 (Cajanus cajan (L.) Millsp)。事实上,虽然印度豇豆属和木豆的野生近缘种都曾接受过专题研究 (Tomooka 等人, . 2014;Khoury 等人 2015;Mallikarjuna 等人 2011)以及与野生近缘种关系的遗传学研究(Aruna 等人 2009;Kassa 等人 2012;Saxena 等人 2014)。直到最近才对马豆进行了小规模的遗传学研究(Sharma 等人 2015)。马豆之所以得名,是因为它几个世纪以来一直被用作马和牛的饲料(Watt 1889-1893),而英国人或地位较高的印度人很少食用它;
Simons 一生致力于研究细胞膜,即包裹着人体每个细胞和大多数细胞区的极薄的脂肪分子双层(“脂质”)。Kai Simons 在细胞膜的脂质双层中发现了漂浮的脂质和蛋白质纳米组装体,这让他想起了芬兰伐木工人用作顺流漂流平台的木筏——因此得名“脂筏”。Simons 展示了这些筏子的迷人特性:它们是流动的、动态的,可以出现和消失。脂筏不仅在信号转导和许多其他膜过程中发挥着重要作用,而且它们还与阿尔茨海默病和艾滋病等许多疾病有关。获奖者 Kai Simons 说:“我激动不已!”“这个奖项令人鼓舞,我希望脂质和脂质组学将继续促进分子生命科学研究,最终也有助于改善健康和临床表现。” Kai Simons 在海德堡的欧洲分子生物学实验室 (EMBL) 启动了细胞生物学项目,并于 2001 年搬到德累斯顿,建立了马克斯·普朗克分子细胞生物学和遗传学研究所。Kai Simons 获得了许多荣誉,包括美国细胞生物学学会的 Keith Porter 讲师。他获得了日内瓦大学、奥卢大学和库奥皮奥大学(芬兰)和鲁汶大学(比利时)的荣誉学位。Kai Simons 也是一位连续创业者。他目前的企业是 Lipotype
逆转录病毒将其基因组插入细胞的 DNA 中,有时是产生宿主生物后代的生殖系细胞:这种病毒被称为内源性逆转录病毒 (ERV)。人类基因组包含多种古代 ERV 的遗迹。一些遗迹贡献了新的基因和调控元件。这项研究在经过深入研究的人类基因组版本 hg38 中发现了更多种类的古代 ERV:ERV-Hako、ERV-Saru、ERV-Hou、ERV-Han 和 ERV-Goku。它还发现了许多 ERV-V 的遗迹,之前所知的 ERV-V 仅在 19 号染色体上的两个带有胎盘基因的副本中发现。它发现了一种两侧是 MER41E 长末端重复序列 (LTR) 的 ERV,与已知的 MER41 ERV 惊人地相似。 ERV-Hako 具有包含来自宿主基因 SUSD6 和 SPHKAP 的序列的亚型:SUSD6 变体在狭鼻目和阔鼻目灵长类动物之间转移。逆转录病毒使用 tRNA 来引发逆转录:根据基因组 tRNA 数据库,Hako 是唯一使用 tRNA-Trp(色氨酸,符号 W)的人类 ERV 遗迹,而 HERV-W 因使用 tRNA-Arg 而得名。一种 ERV-Saru LTR 是先前描述的先天免疫中 AIM2 的增强子。这项研究有助于了解灵长类动物 ERV 的历史,但也表明相关的 ERV 可能存在巨大差异,这对在基因组中清晰注释所有 ERV 遗迹的目标提出了挑战。
1974 年 4 月 1 日,空军授予 McAir 一份价值 210 万美元的合同,用于飞机改装和一般支持,并于 1974 年 5 月 18 日获得配置批准。对当时库存的所有测试飞机进行了评估,选择范围缩小到 F5(71-284)和 F17(72-119)之间。有几个因素导致他们选择了 72-119:它比 F5 轻 800 磅;它是一架空军(Cat II)飞机而不是承包商(Cat I)飞机,并且它的缺失对测试计划的影响较小(事实上,它是一架不必要的减员飞机);而且由于 F17 刚刚下线,因此需要“撤消”的事情更少。1974 年 4 月 27 日至 6 月 11 日期间,McAir 为测试对飞机进行了改装,删除了所有非任务关键系统,包括:襟翼和减速板执行器;内部武器;雷达和火控系统;非关键的座舱显示器和无线电设备;一台发电机;通用液压系统;当然还有 50 磅的油漆(因此得名)。附加设备包括:改进的氧气系统;飞行员所穿的全压服的支撑设备;备用电池;带有阿尔法和贝塔叶片的长皮托管;肩扛式摄像机;电池供电的收音机;灵敏的重力计;备用姿态陀螺仪;飞行员身后座舱盖下的大型 VHF 天线;以及代替尾钩的特殊“固定”装置。最终的结果是,这架飞机比其他 6 批次飞机轻了 1,800 磅。在为 30,000 米飞行做准备时(第 37 次试飞),72-119 的重量为 36,799 磅。