西蒙斯一生都在研究细胞膜,即包裹着人体每个细胞和大多数细胞区的极薄的脂肪分子双层(“脂质”)。凯·西蒙斯在细胞膜的脂质双层中发现了漂浮的脂质和蛋白质纳米组装体,这让他想起了芬兰伐木工人用作顺流漂流平台的木筏——因此得名“脂筏”。西蒙斯展示了这些筏子的迷人特性:它们是流动的、动态的,可以出现和消失。脂筏不仅在信号转导和许多其他膜过程中发挥着重要作用,而且它们还与阿尔茨海默病和艾滋病等许多疾病有关。获奖者凯·西蒙斯说:“我激动不已!”“这个奖项令人鼓舞,我希望脂质和脂质组学将继续促进分子生命科学研究,最终也有助于改善健康和临床表现。” Kai Simons 在海德堡的欧洲分子生物学实验室 (EMBL) 启动了细胞生物学项目,并于 2001 年移居德累斯顿,建立了马克斯·普朗克分子细胞生物学和遗传学研究所。Kai Simons 获得了许多荣誉,包括美国细胞生物学学会的 Keith Porter 讲师称号。他获得了日内瓦大学、奥卢大学和库奥皮奥大学(芬兰)和鲁汶大学(比利时)的荣誉学位。Kai Simons 也是一位连续创业者。他目前的企业 Lipotype GmbH 开发了一种新型脂质组学平台,可用于个性化医疗、功能性食品以及新型皮肤病学和化妆品。最重要的是,Lipotype 提供的血脂组学有望为个性化健康和医疗带来诊断突破。
布里格斯托克温暖空间 - **将于 2025 年 1 月 9 日恢复。** 2025 年 1 月天空指南祝大家新年快乐,希望今年的夜空比去年更加晴朗。月亮将在 13 日为满月,29 日为新月。行星:整个月从我们的位置都看不到水星。金星将在傍晚时分在西南方可见,并在 3 到 4 小时后落下。火星将整个月都可见,在午夜时分从东北偏东升起到南方约 60° 的高度,然后消失在黎明中。木星也将整个月都可见,傍晚时分从东南偏东升起到南方约 59°,并在清晨在西北方落下。土星将整个月在傍晚时分在西南方升起,并在 2 到 3 小时后落下。天王星将在傍晚时分在东南偏南方向高空约 55° 处可见(需要双筒望远镜或小型望远镜),并在月初清晨落下,月底午夜左右落下。海王星也将在傍晚时分在西南偏南方向 30° 处可见(需要双筒望远镜或小型望远镜),并在大约 4 小时后落下。10 日,月亮、木星和星团 M45(昴宿星团或七姐妹)将在傍晚时分在西南方彼此靠近。然后在 14 日,月亮和火星将在清晨时分在西南方彼此靠近。金星和土星将在 18 日至 20 日傍晚时分在西南方彼此靠近,但会在 21:00 之前落下。 30 日,巨蟹座的蜂巢星团 (M44) 将在午夜时分位于南方 57° 左右。该星团距离我们 577 光年,包含约 1000 颗恒星,但并非所有恒星都可用肉眼看到。最好使用双筒望远镜观看,最亮的恒星形成蜂巢形状,因此得名。晴朗的天空。彼得
斯坦福医疗三谷的主要服务区域是位于加州东湾区的三谷。三谷包括利弗莫尔、普莱森顿、都柏林、丹维尔和圣拉蒙等郊区城市,它们位于三个山谷中,三谷是斯坦福医疗三谷得名的来源:阿马多尔山谷、利弗莫尔山谷和圣拉蒙山谷。利弗莫尔、普莱森顿和都柏林位于阿拉米达县,丹维尔和圣拉蒙位于康特拉科斯塔县。斯坦福医疗三谷在普莱森顿、利弗莫尔和都柏林设有医疗机构。斯坦福医疗三谷的住院病人大部分来自三谷。美国人口普查估计,三谷人口约为 379,000。该地区人口结构高度多样化:最大的两个族群是白人和亚裔(分别占 51% 和 28%)。三谷地区有色人种占总人口的 49%。c 住房成本高。在三谷地区,平均租金为 2,374 美元。2021 年阿拉米达县的房价中位数约为 1,050,000 美元,康特拉科斯塔县的房价中位数约为 800,000 美元。d 收入和教育是两个关键的社会决定因素,它们对健康结果有重大影响。三谷地区的家庭收入中位数为 154,165 美元,接近加利福尼亚州(82,053 美元)的两倍。e 此外,三谷地区主要城市的收入中位数与加利福尼亚州的高低有所不同。平均而言,三谷地区 69% 的人生活在家庭收入 100,000 美元或以上,而加利福尼亚州整体这一比例只有 41%。三谷城市中只有约 14% 的人口家庭收入低于 50,000 美元,而
图 1 苯丙酮尿症 (PKU) 是由苯丙氨酸羟化酶 (PAH) 基因的隐性遗传变异引起的(图 A)。苯丙氨酸羟化酶 (PAH) 是一种同源四聚体,可催化苯丙氨酸 (Phe) 不可逆转化为酪氨酸 (Tyr)。该反应需要还原四氢生物蝶呤 (BH 4 )、铁和分子氧作为辅因子(未显示)。在没有 PAH 活性的情况下,苯丙氨酸会在组织中积聚,并以非酶促方式脱氨基为苯丙酮酸,并进一步氧化为其他苯酮,从而得名苯丙酮尿症 (PKU)。双等位基因 PAH 变体编码变体 PAH 信使 RNA (mRNA),然后导致不稳定、活性较差或无活性的 PAH 蛋白,以及肝脏中将 Phe 羟基化为 Tyr 的能力受损。基因疗法 (图 B) 旨在通过基因添加或基于 CRISPR/Cas 的基因或碱基编辑来恢复肝脏 PAH 表达;即,几种实现此目标的不同治疗方法正在小鼠身上进行临床前研究,包括 (1) 基因添加、(2) 通过脂质纳米颗粒 (LNP) 递送治疗性 mRNA、(3) 基因编辑/校正或 (4) 基因插入。目前,基因添加最常见的尝试是通过使用重组腺相关病毒 (rAAV) 载体或非病毒 (微环) 载体将 PAH 表达盒递送到肝细胞。 rAAV 基因组渗透到肝细胞核中,主要保持游离状态,不与宿主基因组相互作用,但表达治疗性转基因。在基因校正中,有几种不同的基因或碱基编辑技术可用于将病理变异位点校正回野生型序列。其中一些编辑方法存在校正频率低的问题;所有方法都必须针对每种特定的病理变异重新设计。基因插入通过将整个 PAH 表达盒永久插入肝细胞基因组中的某个位置,产生基因添加和基因校正的组合(有关更多详细信息,请参阅文本)。
哪些气体属于温室气体?虽然许多气体被认定为温室气体 (GHG),但其中最重要的是:二氧化碳 (CO 2 )、甲烷 (CH 4 ) 和一氧化二氮 (N 2 O)。这些气体由自然和人为来源排放,尽管数量不等。一些人工开发的气体或合成气体也被认定为温室气体。这些气体包括氟化气体 (F 气体),如氢氟碳化物、全氟碳化物和六氟化硫。3 此外,被认定为臭氧消耗物质 (ODS) 的合成气体,如气溶胶中常见的氯氟烃 (CFC),也是一种温室气体。4 当 ODS 在 1980 年代后期被禁止时,氟化气体经常在产品中取代它们。虽然尚未发现 F 气体会破坏臭氧层,但它们仍然是一种温室气体。美国环境保护署 (EPA) 是美国负责监管温室气体的联邦机构,据该机构称,2009 年,六种气体(包括三种氟化气体)结合起来是“人类引起的气候变化的根本原因”,并将这六种气体定义为“混合均匀的温室气体”。5 它们如何得名? 之所以被称为温室气体,是因为它们一旦释放到大气中,就会起到隔离地球的作用。红外能量不会从地球逃逸到太空,而是被温室气体吸收,导致了一种最初被称为全球变暖 的现象,但现在更普遍地被称为气候变化。 6 温室气体的影响各不相同。据欧盟欧洲环境署称,氟化气体的温室效应比等量的二氧化碳高达 23,000 倍。然而,氟化气体的排放量远低于二氧化碳。温室气体产生不同影响的原因之一是,温室气体在空气中停留的时间不同——根据气体的不同,从 10 年到 1,000 年不等。科学家用来比较每种温室气体威胁程度的方法称为全球变暖潜能值 (GWP)。一家法院将 GWP 描述为“顶尖科学家分析温室气体影响的首选工具”。7 该方法使用二氧化碳——温室气体中最大的参与者——作为比较的基线。根据美国环保署的数据,二氧化碳占人类活动排放的温室气体的 79%。美国环保署将 GWP 描述为“衡量温室气体排放对环境影响的程度的指标”。
我们通过 CRISPR–Cas9 编辑 12 个优良玉米自交系中的蜡质等位基因,创造了蜡质玉米杂交种,这一过程比使用回交和标记辅助选择的传统性状基因渗入快了一年多。在 25 个地点进行的田间试验表明,CRISPR-蜡质杂交种在农艺上优于基因渗入杂交种,平均每英亩产量高出 5.5 蒲式耳。玉米蜡质基因 (Wx,也称为 Wx1) 编码一种颗粒结合的 NDP-葡萄糖-淀粉葡萄糖基转移酶,该酶负责延长直链淀粉中葡萄糖聚合物的线性链 1。野生型 (WT) 种子淀粉由~25% 直链淀粉和~75% 支链淀粉组成,而功能丧失的 wx 突变种子淀粉则由~100% 的支链淀粉组成,这使胚乳具有像蜡烛一样暗淡而光滑的外观 2 ,因此得名“糯玉米”。糯玉米淀粉用于造纸和粘合剂工业,并在食品工业中用作稳定剂和增稠剂 3 。美国每年在约 500,000 英亩的土地上生产约 8000 万蒲式耳糯玉米。有~200 个 wx 突变等位基因是自发产生的,通过随机诱变产生的,或通过非优良品系中的 CRISPR-Cas 靶向诱变产生的 4,5 。其中,wx-C 等位基因是现代商业糯玉米杂交种中使用最广泛的 wx 供体。商业化糯玉米杂交种是通过将 wx 突变基因渗入优良自交系而开发的。基因渗入通常需要与轮回亲本回交六到七代并自交才能获得用于商业化杂交生产的自交系。糯玉米杂交种的产量比对应的非糯玉米杂交种低约 5% 3 。产量降低的原因尚不清楚;可能是由于性状基因渗入造成的连锁累赘或 wx 突变导致的淀粉性质改变。使用 CRISPR-Cas9 进行基因组编辑和改进的转化技术 6 – 9 有可能缩短糯玉米杂交种的上市时间并消除回交过程中出现的连锁累赘。我们报道了使用 CRISPR-Cas9 和形态发生基因直接在 12 个优良玉米自交系中产生糯玉米缺失等位基因并进行多点产量测试的情况,所有这些过程耗时三年,这比基因渗入方法快得多。使用图 1a 中概述的策略,在优良自交系中生成了两个蜡质缺失等位基因,即 4 千碱基 (kb) 和 6 kb 缺失。为了在自交系 PH184C 中生成 4 kb 缺失系,将编码基因组编辑试剂 (指导对 CR1/CR3 和 Cas9;补充图 1) 的 DNA 引入未成熟胚胎中
一般录入信息 将记录录入 CIB 和 NCIC 文件会给录入机构带来一些独特的责任问题。所有处理文件录入、修改、补充和取消的操作员都必须了解在记录录入之前、期间和之后需要做什么。NCIC 和 TIME 系统可以说是有关犯罪和罪犯的刑事司法信息的计算机索引。这些系统用作定位系统,协助机构逮捕和追回通缉犯、失踪人员、身份不明人员和被盗财产。这些系统存储了大量的刑事司法信息,任何授权机构都可以立即检索和/或提供给这些信息。为了使 TIME 系统有效工作,所有条目或记录都必须包含尽可能多的信息。记录中添加的信息越多,找到被盗财产、找到失踪人员和逮捕逃犯的机会就越大。热门文件 大多数记录由发起机构(ORI、持有逮捕令、失踪人员报告或盗窃报告、帮派成员信息等的机构)直接放入系统的“热门文件”中。系统中记录的准确性、完整性和维护由执法或刑事司法机构(称为 ORI)负责。由于每个机构都能够从系统中输入、更新和取消记录,因此文件不断变化(因此得名“热门文件”)。可以只对 CIB(州级)文件或 CIB 和 NCIC(全国)文件进行输入。并非每个文件条目都允许这种选择;有些条目会自动同时对两个文件进行输入,而有些文件仅在 NCIC 级别维护。输入后,TIME 系统会编辑信息,然后转发给 NCIC(如果适用)。NCIC 还会对输入的数据进行编辑。一旦数据库接受了记录,TIME 系统和/或 NCIC 系统中的条目就会被分配唯一的编号。这些唯一编号称为系统标识号(TIME 系统)或 NCIC/NIC 编号。如果条目包含的数据少于最低要求的数据、无效的数据或不正确的数据,则可能会被拒绝。NCIC 记录将被取消,相应的 CIB 记录也将被取消。及时性为了确保文件尽可能保持最新,最大限度地提高 CIB 和 NCIC 的效率,确保警官和公众安全,同时增加逮捕通缉犯或找到相关人员或财产的可能性,NCIC 和 CIB 制定了及时输入政策。该政策规定:“为确保系统最大效率,在满足输入条件后必须立即输入 NCIC/TIME 系统记录,输入机构收到后不得超过 3 天”。当机构收到搜查令或其他输入 TIME 系统的信息时,机构应记录接收日期和时间。如果未记录接收令或报告的接收日期,则审计人员和当地机构人员将联合评估接收的及时性。CIB/NCIC 建议在案件报告或令状文件上加盖日期和时间戳。但是,电子或纸质日志也足够了。
骨科手术后使用止痛药缓解术后疼痛是围手术期医学的一个主要问题。特别是在肩部手术(例如肩袖修复)、全关节置换和肢体创伤的情况下,预计疼痛程度会很高;因此,必须采用高效的策略来加快恢复,避免患者不适和痛苦,并降低疼痛相关并发症的风险 [ 1 – 3 ]。在多模式疼痛治疗中,医生通常会联合使用两种或两种以上的止痛药 [ 4 , 5 ]。由于这些药物之间可能存在药理学相互作用,因此很少知道疗效的预测。相互作用可以基于作用机制(例如受体上的药效学)或药代动力学途径。例如,高达 95% 的双氯芬酸在吸收后与血清白蛋白结合,在肝脏中经 CYP 3A4 羟基化和葡萄糖醛酸化后经肾脏消除。临床效果是通过阻断环氧合酶 I 和 II 实现的,从而导致前列腺素的合成减少。对乙酰氨基酚也通过环氧合酶途径表现出其作用,抑制前列腺素合成。另一方面,阿片类药物通过受体起作用,这些受体对这些镇痛药具有特异性,在肝脏中经 CYP 3A4 羟基化后消除。因此,对于临床医生来说,两种以上药物的组合可能不清楚,并且对处方的净效应感到困惑。术后处方中含有具有各种药代动力学和药效学特性的阿片类药物和非阿片类药物。据我们所知,关于当以两种以上药物组合使用时这些特性如何变化的数据很少,而且很少发表(如果有的话)[6-11]。对具有大量止痛药组合的止痛药的任何统计评估都面临着严峻的挑战:使用传统统计方法得出结论极其困难。我们使用人工智能方法 [12-15] 来克服这一困难。我们使用(人工)神经网络(NN)进行数据分析;具体来说,我们使用称为自动编码器的无监督神经网络(图 1)。这些无监督神经网络通过最小化损失(输入和输出之间的差异的平方和,在训练集上取平均值)来生成高精度模拟输入的输出(因此得名:自动编码器)。特征向量在下一段中描述。然后,我们将每个输入特征向量的代码层权重用作降维特征向量的坐标(图 1)。疼痛程度是分类变量,所施用的止痛药也是如此。我们使用独热编码为每个患者生成一个 38 维特征向量(参见方法部分)。这些特征向量并不独立。降维算法(神经网络自动编码器)找到独立性并将结果映射到二维流形(平面图)上。每个患者都是这个平面上的一个点,这些点不是随机分布的;相反,它们是聚集的。在我们掌握的众多聚类算法中,我们使用 DBSCAN 聚类算法 [ 16 ],因为将其应用于点可以识别出具有许多共同止痛药的鸡尾酒聚类。相互依赖性产生包含高效止痛药的聚类;正如我们下面讨论的那样,这一发现无法通过任何其他方式找到(有 61 种不同的止痛药鸡尾酒,总共 750×2 = 1500 种疼痛
SPP 是一种 GXGD 型膜内裂解天冬氨酰蛋白酶,具有 9 个跨膜结构域,可裂解疏水脂质双层中的跨膜蛋白( 1 , 2 )。SPP 在整个进化过程中表现出高度的保守性,广泛存在于各种真核生物中,包括真菌、原生动物、植物和动物( 3 )。它具有广泛的生物学功能:通过消除前体信号肽酶 (SP) 裂解后在内质网 (ER) 中积累的信号肽来调节 ERAD 通路( 4 );与错误折叠的膜蛋白结合并形成参与体内自噬的大型寡聚复合物( 5 );通过水解信号肽来控制正常的免疫监视,促进表位片段的释放,保护细胞免受自然杀伤细胞 (NK) 的攻击 ( 6 );与病毒蛋白相互作用,影响病毒的加工和复制,或作为病毒逃避宿主免疫系统的手段 ( 4 , 7 – 9 )。敲低或抑制 SPP 会极大地影响生物体自身对病毒的抵抗力。SPP 介导的裂解负责将丙型肝炎病毒 (HCV) 核心蛋白引导到脂滴,这是病毒出芽和核衣壳组装的关键步骤。研究表明,使用抑制剂抑制 SPP 可以阻碍 HCV 增殖 ( 7 , 8 , 10 )。在感染过程中,单纯疱疹病毒 (HSV) 利用其糖蛋白 K (gK) 与 SPP 结合,促进 HSV-1 复制。SPP 诱导的敲除小鼠的病毒潜伏期显著缩短,使用 SPP 抑制剂后病毒复制也显著减少 ( 9 , 11 )。SPP 在猪瘟病毒 (CSFV) 核心蛋白的加工和成熟过程中起着重要作用,使用 (Z-LL) 2-酮抑制 SPP 可显著降低 CSFV 的活力 ( 12 )。这些实例凸显了 SPP 在病毒感染中的深远意义,表明针对宿主 SPP 可能是一种非常有效的抗病毒策略。家蚕(Bombyx mori)因其独特的吐丝特性而成为一种经济昆虫。然而,家蚕生产经常受到各种蚕业疾病的困扰。在这些疾病中,BmNPV 是最严重和最昂贵的病毒性疾病,导致严重的蚕业损失。考虑到 SPP 的特性,我们研究了编辑 BmSPP 是否可以提高家蚕对 BmNPV 的抵抗力。我们的预期是编辑 BmSPP 会产生抗性菌株。NPV 是一种存在于多种节肢动物中的杆状病毒,可感染 8 个目 600 多种昆虫,包括鳞翅目、膜翅目、双翅目、鞘翅目等(13)。它是一种具有双链环状 DNA 基因组的 DNA 病毒,因其基因组被包裹在杆状核衣壳中而得名(14)。BmNPV 在感染过程中产生两种类型的病毒颗粒:包涵体衍生病毒 (ODV) 和芽生病毒 (BV)。杆状病毒对宿主幼虫的感染是由 ODV 引起的,随后,BV 导致宿主的全身感染(15)。杆状病毒经口腔进入宿主,经前肠进入中肠,在中肠碱性环境中释放ODV。然后ODV直接与中肠细胞膜融合,释放核衣壳进入细胞质,导致原发性感染(14)。在宿主体内,病毒利用宿主自身的环境在宿主细胞内复制
• 拓扑 2:T 型拓扑因晶体管围绕中性点 (VN ) 排列的方式而得名。Q1 和 Q2 连接直流链路,Q3 和 Q4 与 VN 串联。滤波器看到的纹波频率等于施加到开关 Q1 至 Q4 的 PWM 频率。这定义了滤波器元件的大小,以实现交流线路频率下所需的低总谐波失真。Q1 和 Q2 看到全总线电压,并且需要额定为 1,200 V,才能在系统中为 800 V 直流链路电压。由于 Q3 和 Q4 连接到 VN ,它们只看到一半的总线电压,并且在 800 V 直流链路电压系统中可以额定为 600 V,这节省了这种转换器类型的成本。请参阅 10 kW 双向三相三级 (T 型) 逆变器和 PFC 参考设计。 • 拓扑结构 3:在有源中性点钳位 (ANPC) 转换器拓扑结构中,VN 与有源开关 Q5 和 Q6 连接,并将 VN 设置在直流链路电压的中间。与 T 型转换器一样,滤波器看到的纹波频率等于定义交流线路滤波器大小的 PWM 频率。这种架构的优点在于,所有开关的额定电压都可以是最大直流链路电压的一半;在 800-V 系统中,您可以使用额定电压为 600-V 的开关,这对成本有积极影响。关闭此转换器时,重要的是将每个开关上的所有电压限制为直流链路电压的一半。换句话说,控制微控制器 (MCU) 需要处理关机排序。TI 的 TMS320F280049C 和 C2000™ 产品系列中的其他设备具有可配置逻辑,允许在硬件中实现关机逻辑,以减轻 MCU 的软件任务负担。请参阅基于 GaN 参考设计的 11kW、双向、三相 ANPC。• 拓扑 4:中性点钳位 (NPC) 转换器拓扑源自 ANPC 拓扑。此处,VN 通过二极管 D5 和 D6 连接,并将 VN 设置在 DC 链路电压的中间。滤波器看到的输出纹波频率等于定义 AC 线路滤波器大小的 PWM 频率。与 ANPC 拓扑一样,所有开关的额定电压都可以是最大 DC 链路电压的一半,但不是另外两个开关,而是两个快速二极管。与 ANPC 拓扑相比,NPC 拓扑的成本略低,但效率略低。关断排序的要求也与 ANPC 拓扑相同。可以很容易地从上面提到的 ANPC 参考设计中派生出 NPC 拓扑。• 拓扑 5:飞行电容拓扑已经告诉您此转换器中发生的情况;电容器连接到由 Q1 和 Q2 以及 Q3 和 Q4 实现的堆叠半桥的开关节点。电容器两端的电压被限制为直流链路电压的一半,并在 V+/V– 之间周期性地变化;变化时,功率传输。此拓扑在正和负正弦波期间使用所有开关。在此拓扑中,滤波器看到的输出纹波频率是飞跨电容器每个周期移位的 PWM 频率的两倍,从而导致交流线路滤波器尺寸较小。同样,所有开关的额定电压均为最大直流链路电压的一半,这对成本有积极影响。