1加利福尼亚大学大气科学系,洛杉矶,加利福尼亚州90024,美国2 Max-Planck-Institut Ftir Meteorologie,W-000 Hamburg,FRG 3 Koninklijk Nederlands MeteOllands MeteOlogisch Instituut劳伦斯·利维莫尔国家实验室,利维莫尔,加利福尼亚州94550,美国6国家大气研究中心博尔德,80307,美国7,美国7地球物理学与行星物理学研究所,加利福尼亚州洛杉矶,CA 90024,CA 90024,美国,美国,美国霍克学会,霍克斯大学,牛津大学,牛津大学,牛津大学,牛津大学,牛津大学,牛津大学。美国新泽西州普林斯顿实验室,美国10大气与海洋科学计划,普林斯顿大学,普林斯顿大学,新泽西州08542,美国11,美国11级水流过程实验室,NASA Goddard太空飞行中心,Greenbelt,Greenbelt,MD 20771,美国MD 20771,USA,USA,美国12个气象研究所,日本12-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-纳吉米,tsukuba,tsukuba,tsukuba,tsukuba,我
参考使用以下样式:文章:作者列表。句子中的纸张标题。期刊卷号,初始网页号或文章编号(年)的名称。预印本:作者列表。句子中的纸张标题。[doi或url](年)的预印本。[如果可能的话,使用已发表论文的详细信息更新参考]带有分配的DOI:作者列表的研究数据集。标题。存储库名称,标识符[doi以URL表示](年)。书籍:作者列表。所有单词大写的标题(出版社出版,年份)。只能引用仅发表或接受的文章和预印本;没有“提交”或“正在审查”的手稿。仅在常用或策划网站时才允许引用网站。请勿参考个人网站。请勿使用脚注或尾注。每个参考必须仅参考一项工作。参考文献不得在列表中重复。参考应限于70。参考必须首先按文本中引用的顺序进行编号,然后在图形传奇,表传奇和框中编号。
基于塑料或合成的纺织品被编织成我们在欧洲的日常生活。他们穿着我们穿的衣服,我们使用的毛巾和我们睡觉的床单。他们在地毯,窗帘和靠垫中,我们用家园和办公室装饰。,他们处于安全带,汽车轮胎,工作服和运动服。合成纺织纤维是由化石燃料资源(例如石油和天然气)生产的。他们的生产,消费和相关的废物处理产生温室气体排放,使用不可再生资源并可以释放微塑料。此简报提供了欧洲合成纺织品经济的概述,分析了环境和气候影响,并强调了开发循环经济价值链的潜力。
与TEMPUS XF或XF+(105或523基因,液体活检)和Tempus XT(648个基因,具有匹配的Buffy Coat匹配的固体肿瘤)NGS NGS测定法对晚期泛体肿瘤样品进行测序。在90天内收集样品。在固体组织和体细胞变体中检测到的躯体变异符合正态分布,并将落入两个标准偏差内的变异等位基因级分(VAF)作为相应液体活检中的选定生物标志物,以计算每个样品的肿瘤 - 信息CTDNA TF。
到2050年,世界的预计人口将为100亿。[1]与如此庞大的人口规模相关的最艰巨的可持续性挑战之一将是处理所有塑料产品[2],即Poly-ersers的生产和回收。[3]毫不奇怪,在全球范围内进行聚合物回收的研究努力。机械回收倾向于导致原始材料,但质量较低。[4]一个更好的可能性是化学回收,[5,6],即[7]化学[7] [7]或生物学[8]将聚合物催化为其组成单体,以便将它们重新聚合到同一质量的质量Mate-Mate-Mate-Rial,或A NEW(CO CO)。[9,10]另一种方法是将聚合物重新利用为不同的增值化学物质(升级)。[11-15]两种方法都是闭环,即与统一经济原则兼容。[16]
土壤化学熏蒸是提高农业生产力的有效且流行的方法。然而,熏蒸剂的广谱生物活性会损害与土壤磷循环有关的土壤有益的微生物,例如土壤磷溶解的微生物(PSMS)。我们回顾了土壤化学熏蒸对土壤磷循环的影响,以及最终导致农作物的磷利用率改变的潜在基本机制。这些复杂的过程涉及高度多样化的PSM社区和大量的土壤磷形式。我们讨论了旨在抵消熏蒸对磷利用率,磷使用效率和作物产量的磷化性修订。我们还强调区分化学熏蒸剂引起的土壤磷循环的影响,以及由熏蒸过程引起的(例如塑料覆盖)。这些通常在文献中被冲突;区分它们对于确定适当的修正案以补救可能的耗尽土壤磷降低至关重要。
人们对由相对少量相互作用的神经元组成的各种集合和大型神经形态系统进行了研究 [1±6]。在《Physics Uspekhi》中,许多综述介绍了使用非线性物理方法研究大脑和神经集合中的动态过程的相关主题 [7±18]。最近,对工作大脑的认知和功能特性进行建模已经成为神经动力学的前沿 [19±21]。尤其是,人们对这一主题越来越感兴趣,这与创建能够重现自然智能关键特性的人工智能系统有关 [22, 23]。为了解决这类问题,有必要建立新的动态模型,这些模型首先可以重现复杂的层次组织,其次可以重现神经元结构的可塑性,因为它们的组成以及结构之间和结构内的连接会根据信息输入的存在与否而变化。迄今为止,已经开发出两种动态建模方法 [24, 25]。其中一种方法是所谓的自上而下的方法,模型采用大脑活动模式——模拟大脑高级过程的积分变量 [20]。另一种方法自下而上,对于可以重现大脑高级功能的神经结构模型,首先,基于对神经元和结构之间连接的真实描述,建立单个神经元的模型 [25, 26]。显然,这两种方法的生物学相关模型都应该基于实验数据。在神经生理学家对大脑进行的实验研究中,神经元的活动是在受试者休息时或受试者执行某项任务时记录的。基于实验数据的模型可以通过两种方式开发。第一种是数据驱动建模,即重建一个动态系统,该系统产生的时间序列在数量上接近实验记录的时间序列。第二种方式是基于所考虑的行为问题建模,即
环境,城市化和气候变化副部长Fatma Varank女士和外交事务副部长,欧盟事务大使Mehmet Kemal Bozay先生参加了循环经济会议,讨论了循环经济的重要主题,尤其是零浪费。