摘要:脑机接口(BCI)是大脑与外界进行通信的强大系统。传统的BCI系统仅基于EEG信号工作。最近,研究人员使用EEG信号与其他信号的组合来提高BCI系统的性能。在这些信号中,EEG与fNIRS的结合取得了良好的效果。在大多数研究中,仅将EEG或fNIR视为链状序列,并且没有考虑相邻信号之间的复杂相关性,无论是时间还是通道位置。在本文中,引入了一个深度神经网络模型,通过引入时间和空间特征来识别人脑的精确目标。所提出的模型结合了EEG和fNIRS信号之间的空间关系。这可以通过将这些链状信号的序列转换为分层的三阶张量来实现。测试表明,所提出的模型的精度为99.6%。 关键词:EEG,fNIRS,混合BCI,深度学习,空间,时间。
是 2 的幂。在所有这些有效情况下,反馈矩阵的特征值都被限制为 +1 或 -1。循环矩阵提供了更一般的特征值分布。此外,矩阵的向量乘法可以在硬件中非常高效地实现。此乘法可视为列向量与矩阵第一行的循环卷积。当 TV 是 2 的幂时,可以使用两个 FFT(其中一个可以预先计算)、两个 JV 向量之间的点积以及逆 FFT 来执行此类卷积。该算法的复杂度为 0(N\og(N))。借助蝶形或其他超立方架构,可以很容易地在 VLSI 中实现此矩阵向量积 [Leighton, 1992]。这些架构允许以 0(log(N)) 个时间步长计算 FFT,并且该算法可以流水线化。
摘要:本文的主要目的是提供有关如何创建卷积神经网络 (CNN) 以从 EEG 信号中提取特征的信息。我们的任务是了解为各种应用场景创建和微调 CNN 的主要方面。我们考虑了 EEG 信号的特征,并探索了各种信号处理和数据准备技术。这些技术包括降噪、滤波、编码、解码和降维等。此外,我们对众所周知的 CNN 架构进行了深入分析,将它们分为四个不同的组:标准实现、循环卷积、解码器架构和组合架构。本文还对这些架构进行了全面评估,涵盖了准确度指标、超参数和附录,其中包含一个表格,概述了用于从 EEG 信号中提取特征的常用 CNN 架构的参数。
视觉的深度前馈神经网络模型在计算神经科学和工程领域都占据主导地位。相比之下,灵长类动物的视觉系统包含丰富的循环连接。循环信号流能够随着时间的推移回收有限的计算资源,因此可能会提高物理上有限的大脑或模型的性能。这里我们展示:(1)在自然图像的大规模视觉识别任务中,循环卷积神经网络模型的表现优于参数数量匹配的前馈卷积模型。(2)设置一个置信度阈值,在该阈值处,循环计算终止并做出决策,可以灵活地以速度换取准确性。在给定的置信度阈值下,该模型会在更难识别的图像上花费更多的时间和精力,而无需额外的参数进行更深入的计算。(3)与几个参数匹配和最先进的前馈模型相比,循环模型对图像的反应时间可以更好地预测人类对同一图像的反应时间。 (4) 在置信度阈值范围内,循环模型模拟了前馈控制模型的行为,因为它以大致相同的计算成本(浮点运算的平均次数)实现了相同的精度。但是,循环模型可以运行更长时间(更高的置信度阈值),然后胜过参数匹配的前馈比较模型。这些结果表明,作为生物视觉系统的标志,循环连接对于理解人类视觉识别的准确性、灵活性和动态性可能至关重要。
在太空着陆操作期间,准确估计航天器的相对姿态对于确保安全成功着陆至关重要。本文提出了一种基于 3D 光检测和测距 (LiDAR) 的 AI 相对导航架构解决方案,用于自主太空着陆。所提出的架构基于混合深度循环卷积神经网络 (DR-CNN),将卷积神经网络 (CNN) 与基于长短期记忆 (LSTM) 网络的循环神经网络 (RNN) 相结合。获取的 3D LiDAR 数据被转换为多投影图像,并将深度和其他多投影图像输入 DRCNN。该架构的 CNN 模块可以有效地表示特征,而 RNN 模块作为 LSTM,可提供鲁棒的导航运动估计。我们考虑、模拟和实验了各种着陆场景,以评估所提出架构的效率。首先使用 PANGU(行星和小行星自然场景生成实用程序)软件创建基于 LiDAR 的图像数据(范围、坡度和海拔),然后使用这些数据对所提出的解决方案进行评估。建议使用 Gazebo 软件中的仪表化空中机器人进行测试,以模拟在合成但具有代表性的月球地形(3D 数字高程模型)上着陆的场景。最后,使用配备 Velodyne VLP16 3D LiDAR 传感器的真实飞行无人机进行真实实验,以在设计的缩小版月球着陆表面上着陆时生成真实的 3D 场景点云。所有获得的测试结果表明,所提出的架构能够通过良好合理的计算提供良好的 6 自由度 (DoF) 姿势精度。