磷酸铁锂 (LFP) 电池具有较长的循环寿命,能够承受高负载电流,设计用于处理高达数百兆瓦时的公用事业规模可再生能源发电和储能容量。LFP 设备不含镍或钴,密度较低,制造成本低于 NMC 和 NCA 电池,因此最适合空间不太受限的大型装置。
RES SOPzS 是一种先进的、经济高效的解决方案,非常适合住宅太阳能装置以及需要较长循环寿命和增加浇水间隔的电信或其他基础设施系统的能源存储。专为可再生能源应用而设计的增强型管板技术和 SUNLIGHT 在工业电池方面的丰富经验,在单个电池中产生了卓越的优势组合。
Li-S 电池与锂离子电池相比具有显著优势,但由于多硫化物穿梭导致循环寿命较短,因此受到阻碍。先进材料公司 Lyten 开发了新型 3D Graphene™ 材料,该材料具有机械柔性和导电框架以及分层多孔结构,旨在潜在地限制硫和多硫化物并减轻多硫化物穿梭。Lyten 3D Graphene™ 材料在 Li-S 电池中表现出比商用纳米碳更高的硫利用率,并且与 Lyten 新的受保护锂阳极、先进电解质和多功能隔膜相结合,使 Li-S 电池的比能与当前的锂离子电池相当(~250 -275 Wh/kg)。然而,循环寿命相对较短,纽扣电池在 100% DOD、C/3 下循环 300 次,多层软包电池和 18650 圆柱形电池在 100% DOD 下循环 150 次,在 50% DOD 下循环超过一千次。通过进一步调整 3D 石墨烯和其他材料的进步,这两个类别都实现了稳步增长。对早期原型电池进行的初步安全测试对于含有锂金属阳极的 Li-S 电池产生了令人惊讶的良好结果。
电动汽车 (EV) 的快速普及要求开发高效可靠的充电基础设施。混合储能系统 (HESS) 已成为满足电动汽车充电站多样化能源和电力需求的有前途的解决方案。通过集成多种储能技术,例如电池、超级电容器、飞轮、压缩空气储能 (CAES) 和氢燃料电池,HESS 兼具高能量密度、快速响应和长循环寿命的优势。本文对电动汽车充电应用的 HESS 配置进行了全面比较,重点关注关键性能指标,包括能量密度、功率密度、响应时间、循环寿命、成本和效率。该研究评估了每种 HESS 类型对各种操作场景的适用性,例如高需求城市充电、可再生能源整合和远程离网应用。研究结果强调,电池-超级电容器系统在处理快速充电和负载波动方面表现出色,而电池-氢燃料电池系统则是离网设置中长期存储的理想选择。这种比较强调了 HESS 在提高电动汽车充电基础设施的性能、可持续性和可扩展性方面发挥的关键作用,为更智能、更环保的能源解决方案铺平了道路。
没有其他电池像Varta®一样构造。现代的EFB技术,独特的混合元件,出色的振动阻力和迷宫盖设计非常低的水量,导致比传统电池更安全,更强大。这意味着多达40%的循环寿命和100%的免费维护,以大大降低总运营成本。这种强大的技术是HGV的理想选择(例如卡车,公共汽车和重型建筑车辆)。
Chilwee超级石墨烯2023系列高能量电池是专门设计的,基于超级石墨烯技术的热温,显然可以改善电池的容量,输出功率,循环寿命和高温性能。Chilwee石墨烯2023系列提供快速充电;更长的范围,更大的力量和极长的动力应用寿命,即电动自行车,电动三轮车,电动摩托车和其他设备需要直流电源。
马拉松驱动器在良好的网格条件下表现出卓越的性能,并且在浮动操作中显示出可靠的备份功率。其其他强大功能在这些市场中提供了更多的功能。他们支持诸如5G部署和正在进行的网络致密化之类的挑战,这些挑战需要小包装中的专门电池,并且耐受性较高的寿命更长。随着循环寿命的增强,马拉松式动力汽车还解决了新趋势,例如分散的能源解决方案以及对更高可持续性的需求。