敬业的员工推动了西卡(Sika)的成功,西卡(Sika)的出色表现在很大程度上取决于其积极进取的劳动力。在2024年进行的全球员工调查显示,参与率为86%,远高于战略目标,并且与2019年上次调查的结果一致。鉴于Parex和MBCC的同事自上次调查以来,来自Parex和MBCC的同事就加入了Sika。结果超出了行业中其他公司和全球基准的结果。凭借其高度参与的员工,Sika将在未来的许多年中继续跑得超越并获得市场份额。“收购是增长和收益加速器,从长远来看可以提高我们的利润率。”
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2025年1月31日发布。 https://doi.org/10.1101/2025.01.28.635301 doi:Biorxiv Preprint
摘要:锂金属电池(LMB)具有出色的能量密度和功率能力,但面临循环稳定性和安全性的挑战。这项研究介绍了一种通过优化电荷/放电率来改善LMB周期稳定性的战略方法。我们的结果表明,缓慢的充电(0.2C)和快速放电(3C)显着提高了性能,多层LMB在1000个周期后保持超过80%的容量。快速放电速率可促进SEI层下方的锂电镀,从而抑制其生长并提高库仑效率,而缓慢的放电速率促进了SEI上方的锂电池,从而导致SEI积累。我们提出了一个有理假设,将SEI电导率和循环条件联系起来,并引入间歇性脉冲排放方案以模拟电动汽车应用,从而进一步提高了稳定性。这些优化的自行车策略可增强LMB寿命,公用事业和安全性,为未来几年的市场采用铺平了道路。r
Debadrita Panda 是吕勒奥理工大学的博士后研究员。Debadrita 参与了 NorrlandsNavet 的一项研究项目,该项目涉及工业企业和小型企业在
研究结果显示,要实现 IEA 净零排放目标,改造市场需要从目前的 5000 亿美元增长到 2030 年的约 2.9 万亿美元和 2050 年的 3.9 万亿美元。从 2023 年到 2030 年,仅改造就可能需要近 80 亿吨材料。从 2023 年到 2050 年,这一数字将增加到近 400 亿吨。预计玻璃、钢铁、混凝土、铝、砖和塑料将成为窗户、覆层和屋顶等改造部件的最大需求。其他常用于绝缘更换和升级的基本改造材料包括玻璃纤维、矿棉、泡沫板和喷涂泡沫。
目标 • 开发可扩展、经济高效的工艺来回收当今大量丢弃的塑料。 • 设计新的生物基化学品和工艺来制造和回收循环塑料。 • 与行业合作,推动塑料的新循环模式。 • 培育多元化和包容性的联盟。
本作品是作为美国政府机构赞助工作的记录而编写的。美国政府及其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用的结果做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构、其承包商或分包商的观点和意见。
本作品是作为美国政府机构赞助工作的记录而编写的。美国政府及其任何机构、其任何雇员、其任何承包商、分包商或其雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或任何第三方的使用或此类使用的结果做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务,并不一定构成或暗示美国政府或其任何机构、其承包商或分包商对其的认可、推荐或支持。本文表达的作者的观点和意见不一定代表或反映美国政府或其任何机构、其承包商或分包商的观点和意见。
抽象的O3型层状氧化物阴极(例如NANI 0.5 MN 0.5 O 2)由于其高理论特异性能力而引起了很大的关注,同时使用丰富的低成本钠作为互化物种。与锂类似物(Linio 2)不同,Nanio 2(NNO)表现出较差的电化学性能,这是由于结构不稳定性和下库仑效率而产生的。为增强其用于实际应用的可环性,NNO通过钛取代进行了修改,以产生O3型Nani 0.9 Ti 0.1 O 2(NNTO),该nno通过固态反应首次成功合成。使用多种表征技术详细研究了其出色性能背后的机制。nnto的特定排放能力约为190 mAh g -1,并且在循环中有多个相变的情况下,在2.0-4.2 V的潜在窗口中,即使在循环中存在多个相变。这种行为可以归因于取代基,这有助于维持NA缺陷相位的较大的SLAB距离,并通过降低镍的平均氧化状态来减轻Jahn-Teller活性。然而,高电位下的体积崩溃和不可逆的晶格氧损失仍然不利于NNTO。尽管如此,可以通过涂层和掺杂策略进一步提高性能。这不仅将NNTO定位为有前途的下一代阴极材料,而且还可以成为高能密度Na-ion电池领域的未来研究方向的灵感。
特征:• 系统级别:区域、跨组织、组织、产品 / 解决方案 • 结构:子系统、子区域、功能单元、流程、位置、价值网络、利益相关者 • 行动:设计、减少、修理、翻新、再制造、回收、再生等。