完整作者列表: Regmi, Yagya;劳伦斯伯克利国家实验室, Peng, Xiong;劳伦斯伯克利国家实验室 Fornaciari, Julie;劳伦斯伯克利国家实验室;加州大学伯克利分校,化学与生物分子工程 Wei, Max;劳伦斯伯克利国家实验室 Myers, Deborah;阿贡国家实验室,化学科学与工程部 Weber, Adam;劳伦斯伯克利国家实验室,能源技术领域 Danilovic, Nemanja;劳伦斯伯克利国家实验室,能源存储与分布式资源
2 2022 年 ELCC 风能和太阳能研究报告 3 循环效率的 90% 值是通过取以下资源中列出的锂离子 ESR 的平均值得出的:https://www.eesi.org/papers/view/energy-storage-2019 & eia.gov/analysis/studies/electricity/batterystorage/pdf/battery_storage.pdf
Agile BioFoundry 联盟 Agile BioFoundry 联盟平台联合了九个美国能源部国家实验室的独特能力,以探索有针对性的研发成果,例如通过使用合成生物学提高设计-构建-测试-学习生物工程循环效率、新的微生物宿主生物,以及通过知识产权和生物制造技术的转让实现市场转型。
犹他州锻造项目很好地进行了一次注射良好,16a(78)-32和一个生产井,16B(78)-32,两者都进行了刺激,然后进行了循环测试以评估其连通性。图2是比较两个井的示意图。刺激过程采用了二氧化硅砂剂,多个簇阶段,冰箱塞,滑水和粘合的液体,可达到高达80 bbl/min(aka bpm)的注入速率以及高达1,075,200 lb/级的累积总支撑剂。井16a(78)-32的初始刺激发生在2022年4月。在2024年3月和4月,有效刺激了16A井(78)-32井(78)-32(78)-32(78)-32的四个阶段,然后进行了9个小时的循环测试(图3)。井16a(78)-32的刺激设计包括为每个阶段注入独特的纳米颗粒示踪剂,从而实现了刺激后的流量测量和评估井之间的循环效率,该井之间的循环效率是成功地于2024年8月和9月和9月和9月进行的。
GE 推出了发电行业中第一款采用发动机外中间冷却技术并使用外部热交换器的现代量产燃气轮机 LMS100™。这款燃气轮机提供了当今行业中最高的简单循环效率,紧随 GE 推出最高联合循环燃气轮机系统 MS9001H 之后。LMS100™ 系统结合了框架和航空衍生燃气轮机技术,用于燃气发电。这种结合为客户提供了循环能力,不会影响维护,具有高简单循环效率、快速启动、高可用性和可靠性,并且安装成本低。该系统的独特之处在于在燃气轮机的压缩部分使用中间冷却,利用了燃气和空气压缩机行业广泛使用的技术。多年来,GE 和其他公司已经广泛评估了该技术在燃气轮机中的应用,尽管它从未在大型发电应用中商业化。在过去五年中,GE 已成功在 LM6000™ 燃气轮机的低压和高压压缩机之间使用了 SPRINT ® 专利喷雾中间冷却、蒸发冷却技术。GE 开发的高压比航空燃气轮机(如 GE90 ® )为将中间冷却投入生产提供了所需的技术。LMS100™ 燃气轮机中间冷却技术可提供超过 100MW 的输出功率
摘要 传统燃气轮机是一种非常成熟的技术,性能改进正变得越来越困难和昂贵。由于各自理想的燃气轮机循环具有更高的热效率,增压燃烧 (PGC) 已成为这方面的一项有前途的技术。当前的工作分析了两种带有增压燃烧的燃气轮机汉弗莱循环布局。一种布局复制了燃气轮机循环的经典布局,而另一种布局通过确保燃烧室在化学计量条件下运行来优化增压燃烧的使用。同时,使用两种不同的燃料(氢气和二甲醚)研究了这两种循环布局,以解释燃烧比热增加的差异及其对循环效率的影响。当前的工作最后尝试对增压燃烧室的最大损失进行基准测试,以实现与焦耳循环的效率平价,对于给定的 PGC 燃烧室增压。研究发现,与传统循环结构相比,采用化学计量燃烧的循环布局可使热效率提高多达 7 个百分点。此外,新布局的热效率对涡轮入口温度的敏感度较低,尤其是在低压缩机压力比的情况下。对两种燃料的研究表明,较大的质量比热增加会带来更高的循环热效率,在选择燃料时应予以考虑。最后,对于给定的燃烧室压力增益,计算了导致与焦耳循环效率平价的最大允许增压室压力损失。对于高于 1500°C 的涡轮入口温度,高于 1.6 的压力增益将允许增压室内至少 20% 的相对压力下降。对于较低的涡轮入口温度,相应的压力增益会变得相当高。
表3-1中概述的代表性流体具有不同的pH水平,TDS含量和不可凝胶气体(NCG)量。这些流体所显示的数量不会显着影响流体在产生功率中的热力学性能,因为发电的主要因素是温度,压力和焓。相反,各种流体成分通常会影响特定植物设备的构建材料。由于三种流体之间的热力学相似性,评估的功率周期不是专门针对单个流体设计的,而是适用于评估循环效率和植物资料之间的折衷的任何流体,以适应各种设备中的腐蚀性。从井和植物成分之间的地理流体之间的直接接触提高了植物效率(每兆瓦),但也增加了材料成本,从而增加了更奇特的冶金。
目前,有各种储能技术可用于解决可再生能源间歇性问题。由于储能技术种类繁多,且各有特点、优势和劣势,因此为特定类型的应用选择最合适的技术是一项艰巨的任务。在本研究中,多属性决策方法 VIKOR(Vlse Kriterijumska Optimizacija Kompromisno Resenje)被用作对可用储能技术进行排名的系统方法。竞争技术的评估基于能量密度、功率额定值、放电时间、循环效率、寿命和特定成本。这些不同标准的数据基于文献中的报告,并使用 VIKOR 算法进行处理。本研究表明,锂离子电池是可再生能源储能的最佳技术,评估指数为 Q = 0.16;紧随其后的是钠硫电池,Q = 0.17。这项研究的结果表明,VIKOR 可用于选择最佳的发电储能技术,并指导决策者选择最适合的技术,实现向零碳能源系统的过渡。
可变可再生能源的高股份集成为电力系统的可靠性和成本效益带来了挑战。长期储能的价值有助于解决几天和季节可再生能源供应的可变性,随着电力系统转移到诸如风和太阳能等可变发电的较大份额时,有望显着增长。本研究探讨了2050年西方互连(WI)上长期储能的系统级服务和相关的收益。使用两个阶段的生产成本模型模拟了85%可再生渗透的未来WI系统的运行。使用一系列与对应于四种不同的储能技术相对应的循环效率,对2050 WI系统进行了长时间持续储能对系统范围操作的影响。分析预测了储能调度文件,系统范围的生产成本节省(来自昼夜和季节性运营),以及对生成混合物的影响以及可再生生成缩减的变化。
储能有助于解决可再生能源间歇性问题,并在向低碳社会过渡的过程中提供可靠稳定的能源供应。市场上现有的和正在开发中的储能技术 (EST) 都有各自的优势和劣势。为特定应用选择 EST 需要评估其各种特性。可持续储能的发展需要多标准方法和强大的决策支持系统。从多种替代方案中选择最佳 EST 时要考虑的因素包括能量密度、比能、循环效率、功率密度、比功率、技术就绪水平 (TRL)、电力/能源资本成本和寿命。本研究提出了一种多智能体环境中的模糊多标准决策方法。在标准或替代方案的评估模糊或不精确的情况下,决策模型中纳入了共识度量。本文提供了一个案例研究来展示此类排名方法的使用,这些方法可以指导决策者为固定电力应用选择最佳 EST。