空调和热泵 – 成套终端 ................................................................................................................................ 648 空调和热泵 – 单元式和应用式 .......................................................................................................................... 655 锅炉、熔炉和单元加热器 ................................................................................................................................ 664 锅炉和熔炉 – 组合式(“Combi”)锅炉和熔炉 ............................................................................................. 668 锅炉省煤器 ...................................................................................................................................................... 676 冷水机组 – 空气和水冷 ...................................................................................................................................... 680 冷水机组 – 冷却塔 ............................................................................................................................................. 684 管道密封和绝缘 ............................................................................................................................................. 687 省煤器 – 双焓空气侧 ................................................................................................................................ 693 电子换向 (EC) 电机 – HVAC 鼓风机 .......................................................................................................... 696 电子换向 (EC) 电机 – 水力循环泵........................................................... 701 能量和热回收通风机 ................................................................................................................................ 710 热泵 – 空气源 (ccASHP) .............................................................................................................................. 721 热泵 – 水对空气地源 (GSHP) ...................................................................................................................... 738 热泵 – 中央泵系统中的水对空气地源 (GSHP) ............................................................................. 754 大风量低速 (HVLS) 风扇 ............................................................................................................................. 778
最初计划在 13 T 电池托盘中安装 40-50 个电池,这些电池可以做得很小,由于 Mg-C 电池具有高电流容量,现在足以提供动力。电池供电鱼雷中的第二个托盘的空间需要用于放置所需的硝酸和铬酸以及循环泵。铝板电池壳每个用于容纳两个碳电极和三个镁电极。然而,由于外壳盖中的电流引出困难,导致 1941 年 10 月初放弃了这种电池结构。决定根据伏打电堆原理制造 Mg-C 电池。TVA 制造了这种电池,其中直径为 400 毫米的圆盘堆叠在一个 pertinax 管上,该管同时用于承载电解质。均匀的
传统的嵌入地热回路的桩,称为能源桩,已被成功用作地源热泵系统的热交换器。对于以供暖为主的地区,长期保持地面热平衡对地源热泵系统至关重要。太阳能是手动给地面充电最可行的能源。在本研究中,使用数值模拟研究了用于地下太阳能储存的能源桩-太阳能集热器耦合系统的热性能。结果表明,能源桩-太阳能集热器耦合系统应采用较低的流速,以节省循环泵的运行成本。对于桩长为 30 m 的情况,当质量流速从 0.3 降至 0.05 kg/s 时,太阳能储存率下降约 2%。在一年中,太阳能储存的最大日平均率达到 150 W/m。研究还发现,增加桩的长度和直径可以通过保持系统温度相对较低来提高系统的热性能。此外,经过一年的运行,桩间热干扰对降低太阳能存储率的影响被量化为对于桩间间距为3倍桩直径的组群在10 W / m以内。
本文介绍了一种新开发的降级模型,该模型捕获了网络中的能源流量,包括商业和住宅用户的电气使用情况,以一年的时间为小时。该模型包括建筑物负载,热泵,钻孔场和辅助热/凉爽输入,均与环境温度的热环模型相连。在模型中,钻孔场,循环泵和辅助系统的操作控制可能是可能的。对于给定系统,该模型可以输出每个组件,热环和集体系统的完整状态参数,例如随时间的流速,平均热环温度随时间和总电量使用。该模型还可用于优化系统控制,以最大程度地提高系统效率或最大程度地减少系统运营成本。例如,对示例系统的钻孔控制器进行了一次初步评估,表明,与连续操作模式相比,具有钻孔场的ON/OFF操作的控制器可将年度用法减少33%。因此,该模型可以帮助优化给定系统的操作,以从地热网络安装中获得最大的价值。未来的工作将考虑该模型对演示项目的应用,包括针对操作数据和系统操作优化的模型验证。
2.2.2.1调制旁路2.2.2.2蒸汽闪光灯2.3发动机夹克热恢复设备2.3.1发动机冷却2.3.1.1防冻剂2.3.1.2水夹克温度2.3.1.3施工2.3.2强制循环泵2.3.3润滑油2.3.3润滑油冷却2.4机油冷却2.4发动机热恢复液压器2.5燃气2.5燃气式隔离器2.7燃气式隔离器2.7燃气式辅助台2.7燃气涡轮机2.7。 Water-Cooled Condenser 2.7.2.1 Pressure-Operated Control Valve 2.8 AUXILIARY BOILER FOR SUPPLEMENTAL FIRING 2.9 HEAT EXCHANGERS 2.9.1 Fuel Oil Preheating Heat Exchanger 2.9.2 Condensate Heat Exchanger 2.10 HIGH TEMPERATURE WATER HEAT RECOVERY SYSTEMS 2.11 WATER TREATMENT EQUIPMENT 2.12 INSULATION 2.13 AIR-TO-AIR ENERGY RECOVERY DEVICES 2.13.1 Fixed Plate Heat Exchangers 2.13.1.1 Performance 2.13.2 Energy Recovery Wheel 2.13.2.1录音带构造2.13.2.2能量转移媒体
术语 缩写 AC 吸收式制冷机 ATES 蓄水层热能储存 BDHC 双向区域供热制冷 BTES 钻孔热能储存 CC 压缩式制冷机 CCCP 传统中央循环泵 CCHP 冷热电联产 CHP 热电联产 COP 性能系数 DC 区域制冷 DH 区域供热 DHC 区域供热制冷 DHW 生活热水 DS 区域系统 DVSP 分布式变速泵 EA 电力调节 EAC 电力调节能力 EC 电动制冷机 EES 工程方程求解器 ESS 储能系统 GSHP 地源热泵 GT 燃气轮机 HEX 热交换器 HP 热泵 HRSG 热回收蒸汽发生器 ICE 内燃机 LTDHC 低温区域供热制冷 MILP 混合整数线性规划 MINLP 混合整数非线性规划 NG 天然气 PGU 发电机组 PHE 板式换热器 PSO 粒子群优化 PV 光伏 RES 可再生能源 SNG 合成天然气 TES 热能储存 TEST 热能储存罐
在这七个住宅示范点,GHP 已展示出 a) 在寒冷气候下高效运行,b) 为空间/水加热负荷提供舒适感,c) 降低安装复杂性,d) 可靠性提高,运行时间超过 16,000 小时。在最近这个阶段,多伦多和伊利诺伊州芝加哥的 Next-Gen 装置运行了 8,000 多小时,产生了近 60,000 加仑的热水和 300 多 MMBtus 的空间加热。使用计费数据和建模基线,这些 GHP 作为组合系统可节省高达 33% 的热量,而威斯康星州上一代 GHP 的节省率更高,高达 46%,这是由于运行时间更长(冬季更冷、房屋更大)和其他因素。作为有待改进的领域,GHP 平均每年消耗 300-1000 kWh,此外还要为 AHU 和循环泵增加功率。 GTI 实验室按照 ANSI Z2.40.4 标准对 GHP 进行测试,结果显示区域 IV(美国平均气候)的季节性年燃料利用效率 (AFUE) 为 141%,寒冷气候的季节性年燃料利用效率 (AFUE) 为 138%。