o Ni % o Ti % o 元素 3 % o 元素 4 % o 热处理 1 次 o 热处理 1 温度 o 热处理 2 次 o 热处理 2 温度 o 热处理 3 次 o 热处理 3 温度 o 较低循环温度 o 较高循环温度 o 奥氏体起始温度 o 奥氏体结束温度 o 马氏体起始温度 o 马氏体结束温度
标称能力1.1 AH 3.5 AH循环温度30°C 25,35,45°C细胞化学LFP NCA,NCM石墨石墨数量169 82充电多阶段CC-CV CC CC-CC-CC-CV(0.25,0.5,0.5,0.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1.5,1 c)
在1400/1100°C的循环温度下,可以在SNL处的垂直流动反应器中测量材料的氢生产性能。在此期间,将评估一组新组合物的氧化还原热力学和氢产生性能。焓预测的DFT模型将根据对以前时期测得的材料的氧化还原热力学的反馈进行改进,新型相变材料将通过此期间的计算预测来筛选。
循环研究表明,提高发动机压力比和循环温度有利于减轻发动机重量并提高商用涡轮发动机的性能。NASA 正在与业界合作,确定先进发动机的技术要求和发动机技术,以实现 NASA 先进亚音速技术计划的目标。随着发动机运行条件越来越恶劣,客户要求降低运行成本,NASA 和发动机制造商正在研究提高发动机效率和降低运行成本的方法。目前正在研究多种新技术,以使下一代发动机能够在更高的压力和温度下运行。提高密封性能(在更苛刻的条件下运行时减少泄漏并延长使用寿命)将在实现降低单位燃料消耗和最终降低直接运行成本的总体计划目标方面发挥重要作用。本文概述了先进亚音速技术计划的目标,讨论了先进密封件开发的动机,并强调了满足未来发动机性能目标的密封技术要求。
交联乙烯-四氟乙烯 (X-ETFE) 因其出色的耐热、抗蠕变和抗电弧跟踪性能而常用作航天器中的电缆护套材料。2003 年,Midori-II(先进地球观测卫星-II:ADEOS-II)由于电力供应减少而停止提供观测数据。异常原因被确定为太阳能桨上的放电事件;线束损坏被认为是放电的可能诱因。随后,JAXA 评估了由 X-ETFE 制成的电缆护套的退化情况。对于 Midori-II 任务,最严重的环境因素是高温;循环温度测试显示产生了裂纹。此外,地面测试结果表明,护套材料因原子氧 (AO)、电子束 (EB) 和紫外线 (UV) 照射等空间环境影响而退化。特别是,由紫外线引起的褐变相当严重,高温尤其加剧。不同温度下紫外线照射对 X-ETFE 聚合物太阳吸收率变化的影响。与低于 313K 时相比,373K 样品的太阳吸收率下降很快。太阳紫外线引起的褐变增加了空间材料的太阳吸收率(导致温度进一步升高),从而导致恶性循环。评估后,JAXA 提出建议,X-ETFE 电缆护套不应暴露在太空环境中。本文介绍了空间环境对 X-ETFE 聚合物(SPEC 55 电线和电缆;Raychem – Tyco Electronics Corp.)影响的评估结果:紫外线、AO 和电子束 (EB) 辐照。1. 简介