真菌对磷酸盐的溶解是陆地生态系统养分循环的重要过程,尤其对于植物生长发育必需的元素磷的可用性而言。磷通常以不溶性形式存在于土壤中,例如铁、铝和钙的无机磷酸盐,这限制了植物根部对其的吸收。然而,磷酸盐溶解真菌能够通过分泌有机酸和磷酸酶将可用的磷酸盐释放到环境中,将这些不溶性形式转化为植物可利用的磷酸根离子。该机制不仅在植物营养方面发挥着关键作用,而且在陆地生态系统的可持续性方面也发挥着关键作用,有助于有效的磷循环和提高农业生产力。本研究的目的是通过巴西亚马逊西部微生物收集中心的三种具有散生菌目形态特征的真菌菌株,对不同磷酸盐源的溶解能力进行分子鉴定和表征。首先,重新激活这些细胞系,并使用 2% CTAB 方法进行 DNA 提取。接下来,进行 CaM(钙调蛋白)区域的扩增,作为物种鉴定的分子标记,然后进行测序和系统发育分析。为了确保分析的稳健性,基于相关物种序列的比对,采用了最大似然法,并进行了 1000 次重复。为了评估无机磷酸盐的溶解潜力,在含有三种不同形式的不溶性磷酸盐的培养基中对分离物进行体外定性测试:磷酸铁(FePO₄)、磷酸铝(AlPO₄)和磷酸钙(Ca₃(PO₄)₂)。将真菌在28°C的恒温下培养四天。磷酸盐的溶解度通过溶解指数来量化,该指数是一个参数,表示真菌在培养基中在其菌落周围产生溶解晕的能力。该指数是根据溶解晕的直径与真菌菌落直径的比率计算得出的。系统发育分析证实,所研究的三种菌株属于 Talaromyces sayulitensis 种。在进行的测试中,Talaromyces sayulitensis 菌株表现出溶解不同来源的无机磷酸盐的高潜力,在所有测试介质中呈现溶解晕。在含有磷酸铝(AlPO₄)的培养基中观察到最高的溶解率。这些结果表明,Talaromyces sayulitensis 具有显著的溶解各种形式磷酸盐的能力,作为一种有前途的生物技术工具,它可以提高贫瘠土壤中磷的利用率,促进植物生长,并有助于可持续农业实践。
©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/4.0/。
•与可再生材料来源(Nongfu浪费的PC水瓶,TES,Encina等电子废物等)合作提高了可靠性和可靠性•经ECV,ISCC Plus等认证,与Epeat&Amazone气候质疑友好友好•CQ解决方案含有25%-90%的回收材料,并且可以灵活地应用于广泛的行业,以支持可持续性的目标,例如减少塑料,碳排放和scope 3 >
摘要:紧急能源转换需要在世界能量组合中更好地渗透可再生能源。可再生能源的间歇性需要使用长期存储。目前的系统在衬里的岩石洞穴或空中加压容器中使用水位,作为压缩机的虚拟活塞和扩张器在二氧化碳热泵周期(HPC)中的功能以及有机跨威奇周期(OTC)。在不可渗透的膜中,二氧化碳被压缩和扩展,通过填充和排空泵送的氢水。二氧化碳用两个大气热存储坑交换热量。当需要电力时,当可再生能源可用并被OTC释放时,HPC充电热流体和冰坑。建立了一个数值模型,以复制系统的损失并计算其往返效率(RTE)。随后的参数研究突出了用于大小和优化的关键参数。预期的RTE约为70%,该CO 2 PHE(泵送式电动电力存储)以及PTE(抽水热量储能)可以通过允许间歇性可再生能源的效率存储以及与地区供暖和冷却网络的整合(以及CIES CIES CIES和CITY coity corcient and Cermuty of Future of Fureture of Future of Future of Future of Future of future future。
fi g u r e 1微生物生态进化动力学对生态系统功能的影响。跨站点的社区由不同的操作分类单元(OTU)组成,这是微生物物种的替代物(此处为四个OTU为简单起见)。然而,OTUS掩盖了数百万年的进化差异,排除了对微生物种群或其他适应性反应的进化动力学的见解。当一个社区对环境变化做出反应时,生态(即种间变化)和进化反应(即种子内变化)转移分类(物种)和遗传(等位基因(等位基因)频率)。可以通过系统发育保护程度来评估功能性状(例如,碳降解和温度反应)的变化(例如碳降解和温度反应),以预测社区的整体功能响应。
摘要。所有碳氢化合物(HC)储层泄漏到一些液体。少量HCS逃脱了海上储物,并通过将有机贫困海洋沉积物朝向表面迁移时,这些HC通常在到达沉积物 - 水界面之前被微生物完全代谢。然而,这些低且通常没有注意到的向上的hc伏布仍然影响着周围沉积物的地球化学,并潜在地刺激了浅层地下环境中微生物种群的代谢活性。在这项研究中,我们研究了如何局部的HC渗漏,以使SW Barents Sea的有机贫困沉积物中的微生物硫酸盐减少,重点关注三个采样区域,上面有两个已知的HC沉积物和两个原始海底参考区。对50个重力核心的分析显示,预测的硫酸盐耗尽深度有可能变化,范围从海藻下方3到12 m。我们观察到几乎线性孔隙水硫酸盐和碱度原状,沿硫酸盐还原的低速率(PMOL CM 3 d-1)。segage-sodic和元共转录组数据表明甲烷(AOM)的代谢性和活性对硫酸盐还原和氧化作用。功能标记基因(APRAB,DSRAB,MCRA)的表达揭示了通过硫酸盐还原硫酸盐的脱硫杆菌和甲烷 - 可营养的ANME-ANME-ANME-1古细菌的代谢,在沉积物中HC痕迹维持了HC痕迹。此外,在与AOM过程的同时,我们发现lokiarchaeia和
由于CMOS技术的物理规模限制,摩尔定律接近终结,替代计算方法已引起了相当大的关注,这是改善计算性能的方法。在这里,我们评估了一种新方法的性能前景,基于与约瑟夫森 - 界面的无序超导循环进行节能神经形态计算。突触权重可以存储为与多个约瑟夫森 - 界面(JJ)相连的三个超导环的内部捕获式磁通状态,并以以控制方式以离散通量(量化的通量)施加的输入信号调节。稳定的捕获的磁通状态将传入通量通过不同的途径,其流量统计量代表不同的突触权重。我们使用这些Fluxon Synapse设备的阵列探讨了矩阵 - 矢量 - 义务(MVM)操作的实现。我们研究了MNIST数据集的在线学习的能源效率。我们的结果表明,与其他最先进的突触设备相比,Fluxon Synapse阵列可以减少100倍的能量消耗。这项工作提出了概念验证,该概念将为基于超导材料的高速和高能节能的神经形态计算系统铺平道路。