答:虽然 OG&E 目前预计热能资源循环不会超过一天一次,但循环能力是理想的。市场动态需要灵活地改变运行配置,包括循环运行。应制定 LTSA 来处理基于启动或基于小时的运行。付款公式和停机时间应考虑合同期限内市场动态的变化,允许一年进行基本负荷运行,下一年进行循环运行。作为定量投标评估的一部分,OG&E 将利用经济调度模型来预测 SPP 综合市场中 RFP 文件中确定的每种情景和敏感性中的资源调度。单个资源调度可能会受到情景和敏感性的影响。如 RFP 中所述,定量评估将结合每个投标的情景和敏感性分析结果。投标人可以红线技术规范以符合其项目的能力,包括 LTSA 的条款。
为了在空间狭小的情况下也能有解决方案,VELAIR 推出了 Compact 7,这是一款超紧凑型空调独立装置,长度仅为 43 厘米,宽度为 26 厘米,可提供 7.000 BTU/h 的制冷功率。7.000 BTU 型号采用不锈钢托盘和风扇机身,最多可配备 3 个出风口。优点: • 装置尺寸极其紧凑且重量轻 • 无刷风扇,效率高且噪音低 • 最大电力消耗 660 W(制冷时) • 包括新的壁挂式触摸显示屏 • 热泵逆循环运行,可在冬季加热环境 易于安装:Compact 7 尺寸紧凑、重量轻,可安装在所有类型的船上。Compact 7 可安装 2 或 3 个空气输出,直径为 100 毫米,无需使用任何 T 或 Y 附加分隔器。
加热发动机通过在不同温度下在两个热浴之间进行循环运行,将热能转换为机械工作。它们已被广泛用于进行运动,从古老的蒸汽机到现代燃烧电动机[1]。信息引擎另一方面是通过处理信息来从单个热水浴中提取能量,例如,通过循环测量和反馈操作[2-14]。因此,他们利用了有关系统的状态获得有用工作的信息[15,16]。此类机器可以被视为与一个热储层和一个信息储层相互作用,该储层仅与设备交换熵,但没有能量[17-19]。信息可能是由于信息与热力学之间的基本联系,这是麦克斯韦著名的恶魔[20-22]所示的。在越来越多的经典实验中报道了成功的信息转换[24-34]。
基于物联网的量子无线传感器网络 (IoT Q-WSN) 将量子原理融入无线传感器网络领域,引入了复杂的路由挑战,需要创新的解决方案来实现高效的数据传输。本研究介绍了 NM-LEACH,这是一种受纳伦德拉·莫迪 (Narendra Modi) 领导原则启发的创新路由协议。NM-LEACH 的一个突破性特点是它作为受人类个性启发的首个优化协议而与众不同。NM-LEACH 通过自适应策略、干净的编码实践和连续反馈循环运行,体现了全面而规范的网络开发方法。通过在 NS3 中的模拟,该协议与现有协议进行了细致的评估。结果表明,NM-LEACH 在最小化延迟和优化物联网 Q-WSN 内的数据传输方面表现出色。这项研究推动了量子物联网的发展,并强调了从人类领导品质中汲取灵感的潜力,通过最小化延迟和能耗来创新和增强无线传感器网络功能。
基于条件的燃气涡轮驱动飞机运行概念已在世界各地实现,其实施需要了解与在用飞机发动机部件相关的报废信息。本研究提出了一种估算等效循环运行小时数的算法。本文分析了现有的循环计数方法,并提出了一种新的原创方法。它意味着考虑与极值链“最大 - 最小 - 最大”相关的两个循环。第一个是主要的简单加载循环;另一个循环是从最小值到最低极值的附加循环。假设“全局”最小值是已知的。作者开发了旨在在复杂生命周期中分配单独简单加载循环的算法,使用 Visual Basic for Applications 和 Excel'97 实现。本文还提供了不良记录拒绝和主要发动机部件(驱动轴、盘片和叶片)应力-应变行为评估的方法,该方法基于对气流中温度和压力的定期测量。这些方法允许实时计算损坏的累积。所开发的算法为航空发动机的自动诊断系统奠定了基础。
测试结构的手动布局和特性自动化软件的生成需要大量的工程资源。因此,在高水平上定义结构布局、位置和所需计量,从而实现掩模布局和计量代码的自动生成,这一能力极具吸引力。最早的工艺控制出版物之一涉及从几何参数自动生成测试结构布局 [1],同时还关注测量数据的自动分析 [2]。该主题中的大多数出版物都发表于千禧年之前 [1-8],但测试结构布局的自动化继续引起人们的兴趣 [9-13]。近年来,由于相对低成本工具的出现,直接写入光学能力的使用率有所提高 [14]。这种系统在非生产环境中特别适用于快速原型制作,部分原因是无需考虑掩模成本,而且周期时间更短。与使用光掩模所必须的保守方法相比,消除这些限制为技术人员提供了更大的自由度和灵活性 [15]。可以快速实施短循环运行来研究/优化工艺步骤,而无需包括使用光掩模技术开发测试芯片时通常需要的一套全面的测试结构。这为改进技术的快速开发和原型设计开辟了真正的可能性,因为更改设计只需要修改数字文件。然而,要充分利用这一机会,电子设计自动化 (EDA) 软件还有待进一步改进,包括布局
本文介绍了在世界上第一个电网规模 150 kW e 泵送热能存储 (PHES) 演示系统的调试和测试中开展的研究。该系统采用了两个新型分层填充床热存储器。本研究通过实验研究了其中一个被称为“热存储器”的存储器,其能量存储密度为 1072 MJ/m 3 ,存储温度为 500 ◦ C ,压力为 12 bar。分层存储器是普通填充床存储器的增强版,可提供更高程度的热分层。实验表明,分层可使压力损失降低约 64%,同时产生更窄的温跃层。在考虑标称设计条件下的简单和分层模式操作的情况下,基于第一定律分析计算了往返效率、存储容量和利用率。考虑了两种循环控制场景:基于时间和基于温度。在基于时间的场景中,存储器在两种模式下的性能几乎相似。然而,在基于温度的场景中,分层模式表现更佳。在循环运行期间,分层模式表现更佳,因为它仅在第 3 个循环中就达到稳定状态,且效率、容量和利用率没有任何损失;简单模式的效率具有竞争力,但容量和利用率在每个连续循环后都会下降,并且在第 20 个循环中达到稳定状态。还进行了第二定律分析,以深入了解各种损失及其对性能的影响。
除了结构紧凑、维护成本低之外,燃气轮机还可以使用多种燃料源,这使其成为高效生产能源的自然选择。 因此,在过去 40 年里,燃气轮机在电力行业(包括公用事业、工业工厂以及航空业)中的应用越来越广泛。 [6] 在联合循环运行中,当入口温度超过 1400°C 时,效率可高达 63%。 [2] 因此,人们采用了不同的策略来保护当前使用的镍基高温合金,例如沉积氧化钇稳定化氧化锆热障涂层 (TBC) 和强化薄膜冷却。然而,当考虑长时间使用(t>10000h)时,这一标准并不现实,因为TBC在900°C以上时会快速蠕变,再加上其热膨胀系数(CTE)与合金的热膨胀系数相差很大,会增加剥落的风险,并限制金属基部件在涡轮发动机中的使用。[7–10] 尤其是设想未来的燃气轮机将使用氢或氨等无碳燃料源,水蒸气是燃烧的主要产物之一,会加剧这些合金的降解。[5,11–13] 因此,为了减少温室气体排放和提高燃气轮机效率,需要用更坚固、耐氧化和腐蚀的材料来替代它们,这些材料可以在更高的温度下使用。由于密度低、热膨胀系数低(3-5.5×10−6K−1)、抗高温蠕变性和熔点高,Si3N4、SiC、SiC/SiC复合材料等非氧化物硅基陶瓷在燃烧环境中的应用非常突出[14–21]。
IFAM GmbH 是一家专门将微电子技术应用于安全技术的工程办公室,位于德国埃尔福特 Parsevalstraße 2, D-99092。联系信息包括电话 +49 – 361 – 65911 -0 和电子邮件 ifam@ifam-erfurt.de,网站为 www.ifam-erfurt.de。该公司提供 IMT4CPU 模块,其中包括 TTL 输入、串行接口 (RS422、RS485)、USB 接口和 LED 输出等功能。技术规格包括最大工作电压为 30V DC,最大电流消耗为 60/30 mA(12/24 V DC),具有 2 个串行 IF 模块、1 个 RS485 模块、1 个 USB 模块、1 个 LED-IF 模块和最多 128 个 I/O 接口。IMT4CPU 还可用于控制最多 2000 个 LED,可通过 IMT4PROC 接口连接进行编程。它具有 4 个 TTL 输入和最多 48 个继电器输出,用于控制外部设备。Minimax FMZ4100 火灾探测控制面板中的微处理器控制分析单元可有效监控大面积区域并从每个探测器传输数字信息,从而实现单个警报识别并将小区域分组为一个探测器组。火灾探测控制面板 FMZ 4100 具有内置自动中断控制,可快速响应警报信号而不会延迟。面板本身由看门狗定时器监控,每次数据通过其循环运行程序时,看门狗定时器都会重新启动,以防止触发脉冲故障时出现故障。如果发生干扰,只有一个插件单元会因并行操作而无法运行,并且可以在不中断操作的情况下更换有缺陷的组件。FMZ 4100 包含早期 Minimax 设备的基本功能,并符合现代安全系统要求,具有探测器识别、大型 LC 显示屏、报告打印机、状态和干预系统以及与建筑管理系统的接口。这可以快速评估警报以采取预防措施。该面板配备了广泛的分析软件,可区分报警信号和杂散信号,指导用户完成操作阶段,以最大限度地减少错误操作或压力影响的异常行为。FMZ 4100 符合最高安全要求,遵守有效的准则、规范和法规,如 VDE 和 EN 54,并获得德国财产保险协会的批准。面板的模块化设计允许扩展,在其最小的基本设计 (GAB 32) 中可以容纳 2 x 32 个火灾报警组和 32 个主要控制组。通过添加额外的插入式区域模块,FMZ 4100 火灾报警系统可以扩展到最多 3072 个组。主系统控制这些模块,而它们作为从属单元独立运行。该系统可以与最多 8 个立式机柜组合以实现这一总容量。FMZ 4100-GAB 32 型号具有 32 个自动和接触式火灾报警区域,以及用于电气监控和功能报警设备的主控制组。15U 壁挂式机柜提供 128 个自动和接触式火灾报警区以及主控制组。直立式机柜提供线路端接卡,以将每个组连接到线路卡。使用一张线路卡,可以为自动火灾报警、接触式火灾报警和主控制组提供、评估和监控四个报警组。系统将数字化报警信号记录在火灾控制面板中,然后将其与非易失性存储器中的编程值进行比较。如果结果为阴性,则产生报警信号或干扰信号。冗余报警电路确保即使控制系统因干扰或故障而发生故障也能持续运行。此外,探测器识别系统 (ZID-V) 使用微控制器和二次网络数据请求提供有关探测器位置和类型的实时信息。分析软件检查探测器信号的准确性,对其进行评估,并通过 FIFO 电路将结果异步传输到分析单元,结果显示在 8 x 40 字母数字 LC 显示屏上。ZID-V 系统与报告打印机等其他组件相辅相成,形成一个综合信息系统,可快速引入和部署。灭火系统依靠果断和适当的措施才能正常运作。“灭火控制”组件用于管理单区或多区灭火系统,独立于连接到火灾探测控制面板的其他系统运行。每个灭火区都由一个独立运作的灭火控制卡控制,该卡监控和控制探测器、释放装置和报警系统等重要组件。在发生警报时,灭火控制系统会记录探测器信号,发出火灾警报,并激活预编程的控制功能以启动灭火系统。火灾探测控制面板 FMZ 4100 可使用特殊配置程序针对不同应用进行编程,该程序将输入的特性转换为微控制器可理解的“语言”。这提供了最大的灵活性,尤其是在扩展现有系统时。通过现代下拉菜单技术和易于理解的输入说明,编程变得简单。火灾探测控制面板 FMZ 4100 还可以配备免费的可编程继电器,以便进一步组织警报,例如断开空调、中断制造过程、打开排烟挡板等。使用 Minimax 配置程序为每个特定系统确定继电器的操作和逻辑组合。标准功能包括由警报、预报警、干扰触发的操作,以及火灾探测器组的断开。火灾探测控制面板 FMZ 4100 具有标准串行接口,用于连接外部设备(如报警和图形报告系统或打印机),从而实现与上级管理系统的通信。火灾探测控制面板 FMZ 4100 可以通过串行接口与其他面板通信,为中继器面板中的 LED 控制提供 768 个可编程输出。它还具有串行接口,用于将数据传输到台式打印机等设备。该面板提供额外的接口,用于连接消防队控制面板和公共主报警系统,从而能够自动将报警信号传输到消防部门等外部服务。FMZ 4100 旨在适应特殊应用,例如用于木工或喷漆等行业的火花熄灭系统,以及计算中心设备保护。这些定制系统可以集成,而无需额外的分析电子设备,从而确保无缝运行,并具有可调节灭火时间和监测灭火剂供应等功能。气体探测器是一种模块化组件,可轻松集成到 FMZ 4100 中。该自主子系统持续监测气体浓度,当浓度超过预设限值时触发外部设备激活。所有测量数据都记录在 FMZ 4100 中,即使经过长时间后也可以进行事件追踪。控制面板的方案包括消防队操作面板、报告打印机和以 FMZ 4100 为核心的建筑集成。FMZ 4100 火灾探测控制面板多区域 CO2 灭火控制系统,用于喷漆厂和消防队钥匙箱,用于防火。FMZ 4100 面板采用多区域系统,具有自动释放、EMI 保护和光学/声学警报。它还包括用于探测器组的现场端接卡和主 CPU 外围设备评估和控制。附加功能包括: - 自动探测器 - 气体探测 - 浓度显示和操作面板 - 灭火系统,如大水灭火、泡沫/粉末灭火、火花灭火、预作用喷水灭火系统和氩气灭火系统 - Minimax 探测器收集 - 机械关闭排烟口解锁 - 带评估和控制系统的数字系统监控。 - 静态电流监控 - 自动和接触式探测器的探测器识别系统。 - EMI 保护 用于消防的气体探测系统 • 电源:15 V、12 V、5 V、24 V DC • 电池类型:免维护密封电池 (2 x 12 V)、耐深度放电、容量范围特定 • 应用:30 W/60 VA、1.5 A、250 V • 温度范围:-5°C 至 +40°C • 操作区域:干燥区域,限制进入 (G 29013) • 具体数据:+ 串行接口:RS 232C + 控制继电器数量:全套 + 外壳类型:壁挂式,32/32/321(2 x 80U 旋转框架),RAL 7032,灰色,结构化 + 直立机柜:31U、40U 和 128U(RAL 7032、灰色、结构化)• 尺寸:+ 525 x 709 x 275 毫米(32/96/961)+ 800 x 1600 x 500 毫米(128/128/1281)+ 800 x 2060 x 600 毫米(40U)• IP 等级:42、54 • 完整设备重量(不含电池):分别约 48 千克、135 千克和 160 千克 • 颜色:灰色 Minimax GmbH & Co. KG,位于德国巴特奥尔德斯洛 Industriestrasse 10/12,可致电 +49 45 31 8 03-0 或传真 +49 45 31 8 03-2 联系。电子邮件查询可发送至 [email protected],网站访问者可在 www.minimax.de 上获取更多信息。该公司持有 VdS 认证,符合 ISO 9001 F 15e/2.96/2/01.05/HMB 2 标准,编号为 S 89 201 1。该文本在德国印刷,概述了以下详细信息:四组自动探测器、七组接触探测器、四个主要控制组和八个用于非监控组的免费可编程继电器。