液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
摘要 电活性聚合物的驱动和传感应该是柔性 MEMS 的一个机会,但它们的微加工和集成仍不成熟。人们仍期待一些创新材料和微加工工艺。本文首次全面阐述了聚合物微传感器 (MT),包括集成和操作。制造工艺依赖于市售的聚(3,4-乙基二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)导电墨水,涂在柔性 SU-8 光刻胶微芯片上。演示了由不同形状的可单独寻址 MT 组成的复杂柔性单片单元的批量制造。所得聚合物 MT 在露天表现出非常有前途的弯曲驱动和应变传感特性。值得注意的是,与用激光切割制造的材料相比,微加工工艺对性能没有影响。这项工作为柔性 MEMS 的开发铺平了道路,用于软微机器人、医疗和空间应用中的微流体。
行业用作集装箱建筑材料和一部分机器。尽管它们在某些条件下易受腐蚀,尽管具有抗腐蚀的保护性氧气层。寻求保护这些金属,在受限的自旋极化DNP基础下,使用局部密度B3LYP进行了有关铝和锌腐蚀抑制的理论研究,以获得分子PNNT的稳定几何形状。e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。键长和角度的数据表明该分子是金属表面上的四方平面。Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程
矫形器具中的微型传感器:用于监测器具磨损情况审查 Moode Kaladhar Naik 博士 副教授 正畸和牙颌面矫形外科系,政府牙科学院和医院,ESI 路,维杰亚瓦达,安得拉邦 通信电子邮箱:kaladhar1982@gmail.com Siddarth Goudar 博士 助理教授,口腔颌面外科系,Gadag 医学科学研究所,卡纳塔克邦 Gadag,印度 电子邮箱:siddarthgoudar1985@gmail.com Manish Pisarla 博士 MDS,助理教授,正畸和牙颌面矫形外科系,Meghana 牙科科学研究所,尼扎马巴德 电子邮箱:manishpisarla@gmail.com Damarasingu Rajesh OMFS 博士,博士学者,OMFS 系,Narsinhbhai Patel 牙科学院和医院,Sankalchand Patel 大学,古吉拉特邦维斯纳加尔 电子邮件:rajeshoralsurgeon@gmail.com Vaibhavee Kurrey 博士,印度恰蒂斯加尔邦比拉斯布尔 Triveni 牙科科学医院和研究中心 BDS 电子邮件:vai.kurrey01@gmail.com Eesha Pramod Pisal 博士,印度卡拉德克里希纳医学科学研究所牙科学院牙科外科学士 电子邮件:dr.eeshapisal@gmail.com
多个垂直竖立的热电微柱作为热电对和吸收层的机械支撑,吸收层吸收辐射能产生温差,驱动由p型和n型微柱组成的热电偶输出电压,多个热电偶可以串联,以改善信号输出。
液体分析是跟踪食品、饮料和化学制造等行业是否符合严格的工艺质量标准的关键。为了在线并在最感兴趣的点分析产品质量,自动监控系统必须满足小型化、能源自主性和实时操作方面的严格要求。为了实现这一目标,我们介绍了在神经形态硬件上运行的人工味觉的第一个实现,用于连续边缘监控应用。我们使用固态电化学微传感器阵列来获取多变量、随时间变化的化学测量值,采用时间滤波来增强传感器读出动态,并部署基于速率的深度卷积脉冲神经网络来有效融合电化学传感器数据。为了评估性能,我们创建了 MicroBeTa(微传感器味道测试),这是一个用于饮料分类的新数据集,包含 3 天内进行的 7 小时时间记录,包括传感器漂移和传感器更换。我们实现的人工品味在推理任务上的能效比在其他商用低功耗边缘 AI 推理设备上运行的类似卷积架构高出 15 倍,在 USB 棒外形尺寸中包含的单个英特尔 Loihi 神经形态研究处理器上实现了比传感器读数采样周期低 178 倍以上的延迟和高精度(97%)。
摘要 - 我们报告了一种可生物降解的自动传感器,用于测量体内溶解的氧气。操作原理是氧还原反应与腐蚀电化学夫妇阴极的通常显性氢还原反应的竞争。由于氧还原反应对总体电化学反应的相对贡献取决于局部氧气的集中,因此这对夫妇的输出电压也取决于局部氧气浓度。通过使用层压层嵌入可生物降解的聚(乳酸)底物中,将传感器嵌入可生物降解的金属镁和钼。外部生理溶液被用作电解质。在典型的生理氧浓度范围内测量了传感器的输出电压(即,在整个腐蚀夫妇中产生的电压)是氧浓度的函数。观察到每百分比氧浓度约为6 mV的线性输出电压响应;高于此范围的氧气浓度导致传感器饱和。[2020-0192]
2015年12月26日收到,2016年1月16日修订,2016年1月19日接受摘要乳酸是临床分析和食品行业中最重要的代谢产物之一。其检测是诊断许多人类疾病疾病的重要临床测定法。结果,最终提出了基于乳酸氧化酶(LOX)酶的检测方法,对乳酸及其相关的乳酸离子进行了分析。需要在显微镜下的智能乳酸生物传感器的开发基于智能乳酸生物传感器的开发(电化学效果晶体管)。乳酸和丙酮酸浓度谱,并从电极表面上的氢过氧化氢通量计算出电流。在存在乳酸离子的情况下,它负责在电化学微电极上氧化过氧化氢H 2 O 2,从而导致质子H +的产生,最后导致局部pH值降低。提出的模型指出了电子设计的作用,即每个体积单位n enz的酶单元数量,L-乳酸氧化酶Michaelis常数K M和乳酸浓度[S 1]。将电子概念扩展到检测到乳酸[1-6 mm]浓度范围的检测。灵敏度为13 mV/mm。关键字:基于乳酸生物传感器的电源,解决,电流,电化学微电极,ph。1。引言乳酸(C3-CH-OH-COOH)是一种与生命,健康和食物领域有关的许多生化和生物学过程涉及的众所周知的化学物种。对于食物化学,评估牛奶,牛奶产品,水果,蔬菜和葡萄酒的新鲜度和稳定性很有用。乳酸检测是通过使用四种酶:乳酸脱氢酶(LDH),乳酸氧化酶(LOX),单氧化酶乳酸(LMO)和细胞色素B2(Cyt B2)。在所有三种情况下,该过程都会导致丙酮酸和LMO导管乙酸盐。在所有情况下,检测都是基于乳酸氧化酶的酶促反应[1]。通过实现基于LOX的安培微传感器[2 3]成功完成了这项工作。检测原理是基于使用金属工作的微电极的使用,该微电极在其上被固定的酶层含有乳酸氧化酶。基于技术,使用了各种金属电极(铂[1 4 5 6],石墨[1],碳[1])和各种酶