的确,与上述标准有关,未冷却的重测技术是THZ 2D成像的有前途的候选人。它在室温下运行,阵列在硅微电子铸造厂的高级CMOS应用特定集成电路(ASIC)上方生产,紧凑的单层大型2D阵列 - 现在以连续降低价格在工业上生产Mpixel格式。作者组[3]用Leti-Ulis专有的非定形 - 硅螺旋体传感器测试了此成像设置配置[4]。用量子级联激光器(QCL)在3 THz下的测量显示出小于0.5%的光吸收效率。即使这种敏感性足以进行测试过的活动THZ成像设置,这些结果也促使研究了BOLOMETER PISERETURTER的研究,专门调整了对THZ辐射的感觉,以便遵守现实生活中的用户库。
Eurostars 3 – 呼叫 1 376 用于制造汽车环境微光学器件的高性能混合聚合物 德国弗劳恩霍夫协会研究所 资助
EOST381M 基于模块化有效载荷,最多可容纳六个 EO 传感器。它是一个单 LRU 和 ITAR 免费系统,使用专有的 ERICA_Plus 热像仪,工作在中波长光谱 (3-5μm) 中,基于公司的焦平面阵列 (FPA) Hawk(标准清晰度)或 Falcon(高清)探测器。对于瞄准操作,EOST381M 使用激光指示器(符合 STANAG3733)进行炸弹/导弹精确激光制导。对于距离测量,如果需要,可以安装激光测距仪,并且还可以使用 NVG 兼容激光指示器与全高清 TVC SPOTTER 配合使用,以提供增强的微光目标标记能力。如果需要,可以选择使用 SWIR 摄像机来提供可见点激光以进行视觉目标确认。
EOST381M 基于模块化有效载荷,最多可容纳六个 EO 传感器。它是一个单 LRU 和 ITAR 免费系统,使用专有的 ERICA_Plus 热像仪,工作在中波长光谱 (3-5μm) 中,基于公司的焦平面阵列 (FPA) Hawk(标准清晰度)或 Falcon(高清)探测器。对于瞄准操作,EOST381M 使用激光指示器(符合 STANAG3733)进行炸弹/导弹精确激光制导。对于距离测量,如果需要,可以安装激光测距仪,并且还可以使用 NVG 兼容激光指示器与全高清 TVC SPOTTER 配合使用,以提供增强的微光目标标记能力。如果需要,可以选择使用 SWIR 摄像机来提供可见点激光以进行视觉目标确认。
EOST381M 基于模块化有效载荷,最多可容纳六个 EO 传感器。它是一个单 LRU 和 ITAR 免费系统,使用专有的 ERICA_Plus 热像仪,工作在中波长光谱 (3-5μm) 中,基于公司的焦平面阵列 (FPA) Hawk(标准清晰度)或 Falcon(高清)探测器。对于瞄准操作,EOST381M 使用激光指示器(符合 STANAG3733)进行炸弹/导弹精确激光制导。对于距离测量,如果需要,可以安装激光测距仪,并且还可以使用 NVG 兼容激光指示器与全高清 TVC SPOTTER 配合使用,以提供增强的微光目标标记能力。如果需要,可以选择使用 SWIR 摄像机来提供可见点激光以进行视觉目标确认。
摘要:微光发射二极管(µ LED)具有高响应速度,寿命长,高亮度和可靠性的优势,被广泛视为下一代展示技术的核心。但是,由于诸如高生产成本和低量子效率(EQE)之类的问题,µ LED尚未真正商业化。此外,量子点(QD)的颜色转换效率(CCE) - µ LED也是其在展示行业中实际应用的主要障碍。在这篇综述中,我们系统地总结了纳米材料和纳米结构在µ LED中的最新应用,并讨论了这些方法对提高µ LED的发光效率以及QD-µLED的颜色转换效率的实际效果。最后,提出了µ LED商业化的挑战和未来前景。
EOST381M 基于模块化有效载荷,最多可容纳六个 EO 传感器。它是一个单 LRU 和 ITAR 免费系统,使用专有的 ERICA_Plus 热像仪,工作在中波长光谱 (3-5μm) 中,基于公司的焦平面阵列 (FPA) Hawk(标准清晰度)或 Falcon(高清)探测器。对于瞄准操作,EOST381M 使用激光指示器(符合 STANAG3733)进行炸弹/导弹精确激光制导。对于距离测量,如果需要,可以安装激光测距仪,并且还可以使用 NVG 兼容激光指示器与全高清 TVC SPOTTER 配合使用,以提供增强的微光目标标记能力。如果需要,可以选择使用 SWIR 摄像机来提供可见点激光以进行视觉目标确认。
广泛使用钙钛矿,因为光吸收器要求更深入地了解这些材料与光的相互作用。在这里,通过光膜光学光谱和微光亮度,在高毛利率同步源的软X射线光束下跟踪甲酰胺铅三溴(FAPBBR 3)的化学和光电特性的演变。在辐照过程中,两个对比过程正在发挥作用。材料的降解表现出PB 0金属簇的形成,气态BR 2的损失,减少和移位光致发光发射。由于PB 0的重新氧化以及FA +和Br-ions的迁移,因此延长光束暴露时间的光致发光信号归因于FAPBBR 3的自我修复。这种情况在通过AR +离子溅射处理的FAPBBR 3栏上进行了验证。降解/自我修复效应先前报道了辐照到紫外线状态,具有基于perovskites的X射线检测器的寿命。