本研究报告了对凸块金属化下 Ti/Pt/Au 上放置的铟微凸块/柱内部均匀性的研究。这对于连接电阻率、长期耐用性和后续混合工艺(例如芯片键合)非常重要。金与铟发生反应,形成具有与纯铟不同的化学物理参数的金属间合金。根据透射电子显微镜图像分析了金属间合金的几何和结构参数。使用透射电子显微镜和能量色散谱法确定所研究样品中元素的分布。未退火(A)和退火(B)铟柱中的金属间合金厚度分别为 1.02 μm 和 1.67 μm。两个样品均观察到合金的层状和柱状内部结构,样品 B 中的晶粒大两倍。检测到未退火 In 柱的 Au-In 金属间合金的分级化学成分,而退火样品 B 的恒定成分为 40% Au 和 60% In。原子分布对 In 柱的机械稳定性影响较小。对于厚度为 1.67 μm 的均匀柱状金属间合金结构,直径为 25 µm、高度为 11 µm 的 In 柱的产率可能超过 99%。
摘要:随着微电子封装与集成化的快速发展,封装结构中微焊点在冲击载荷作用下的失效风险日益受到关注。然而,由于尺寸减小和接头结构的演变,基于铜柱的微凸块接头的失效机理和可靠性性能很少能借鉴现有的板级焊点研究成果。本研究针对芯片上芯片 (CoC) 堆叠互连的微凸块接头的开裂行为,对 CoC 测试样品进行反复跌落试验以揭示裂纹形貌。研究发现,导致微凸块失效的裂纹首先在金属间化合物 (IMC) 层与焊料的界面处萌生,沿界面扩展一定长度,然后偏转到焊料基体中。为进一步探究裂纹扩展机理,采用围线积分法计算了IMC与焊料界面处裂纹尖端的应力强度因子(SIF),定量分析了焊料厚度和裂纹长度的影响,并与裂纹偏转准则相结合。将SIF与焊料-Ni界面和焊料基体的断裂韧性相结合,建立了裂纹偏离原始扩展路径的准则,可用于预测裂纹偏转的临界裂纹长度和偏转角。最后,通过板级跌落试验验证了焊料厚度与主裂纹临界偏转长度和偏转角之间的关系,并简要讨论了焊料基体中晶粒结构对实际失效寿命的影响。
随着互连密度不断缩小,以及制造更细间距基板的成本不断上升,使用传统有机堆积基板的倒装芯片封装在细间距布线方面面临着重大挑战。为了满足这些需求,TSV 中介层应运而生,成为一种良好的解决方案 [1-3]。TSV 中介层提供高布线密度互连,最大限度地减少 Cu/低 k 芯片与铜填充 TSV 中介层之间的热膨胀系数 (CTE) 失配,并由于芯片到基板的互连更短而提高电气性能。TSV 中介层晶圆是通过在硅晶圆上蚀刻通孔并用金属填充通孔来制造的。业界常用的两种 TSV 方法涉及“先通孔/中通孔”和“后通孔”工艺流程。本文中的工作使用“先通孔/中通孔”流程,因为它提供了互连密度的最大优势。通常,使用深反应离子蚀刻 (DRIE) 工艺蚀刻 TSV 通孔以形成高纵横比通孔。 TSV 的直径通常为 10-20 微米,深度为 50-100 微米。TSV 的壁衬有 SiO2 电介质。然后,形成扩散屏障和铜种子层。通过电化学沉积用铜填充通孔。使用化学机械抛光/平坦化 (CMP) 去除铜覆盖层。使用标准后端制造工艺在中介层顶部形成 M1 – Mx 的互连线。中介层顶部涂有钝化层并形成微凸块焊盘。