8.1 Poincare stability (stability of paths) 260 8.2 Paths and solution curves for general systems 265 8.3 Stability of time solutions: Liapunov stability 267 8.4 Liapunov stability of plane autonomous linear systems 271 8.5 Structure of the solutions of n-dimensional linear systems 274 8.6 Structure of n-dimensional inhomogeneous linear systems 279 8.7 Stability and boundedness for linear系统283 8.8具有恒定系数的线性系统的稳定性284 8.9 n变量中的FIRNT级系统的平衡点线性近似289 8.10 n维度的一类非自主线性系统的稳定性293 8.11近线性溶液的稳定性近线性溶液的稳定性300 300 300 300
课程描述MAP2302 |简介微分方程| 3.00学分本课程强调了普通的微分方程,一阶线性和非线性方程和应用的解决方案方法;具有恒定系数,差分操作员方法,高阶线性方程的均匀和非均匀线性方程;拉普拉斯变换及其属性,基本存在定理,串联解决方案,一阶方程的数值解决方案,初始和边界价值问题,振动和波浪以及自主系统的介绍。计算课程。
从离散采样观测值建模连续动态系统是数据科学中的一个基本问题。通常,这种动态是非局部过程的结果,这些过程随时间呈现积分。因此,这些系统用积分微分方程 (IDE) 建模;微分方程的泛化,包含积分和微分分量。例如,大脑动力学不能准确地用微分方程建模,因为它们的行为是非马尔可夫的,即动态部分由历史决定。在这里,我们介绍了神经 IDE (NIDE),这是一种基于 IDE 理论的新型深度学习框架,其中使用神经网络学习积分算子。我们在几个玩具和大脑活动数据集上测试了 NIDE,并证明 NIDE 优于其他模型。这些任务包括时间外推以及根据看不见的初始条件预测动态,我们在自由行为小鼠的全皮层活动记录上进行了测试。此外,我们表明 NIDE 可以通过学习的积分算子将动态分解为马尔可夫和非马尔可夫成分,我们在服用氯胺酮的人的 fMRI 脑活动记录上进行了测试。最后,积分算子的被积函数提供了一个潜在空间,可以洞察底层动态,我们在广域脑成像记录上证明了这一点。总之,NIDE 是一种新颖的方法,它能够使用神经网络对复杂的非局部动态进行建模。
尽管在另一个课程中涵盖了用于集成微分方程的数值方案的全部覆盖范围,但专门的课程是启发性的,以介绍数值集成商的使用并学习Python中的语法以运行这些算法。特别是在本讲座中,我们将练习如何使用Python库Scipy.integrate对非线性ODES系统进行编码。tihs课程主要集中在基本面和分析技术上,但是关注数值方法将很有用,因为在实践中,这是我们最终在所有实际情况中最终使用的。我们将使用jupyter笔记本进行本课程,而重点并不是了解数值集成方法如何工作,而是能够使用它们。
许多现实世界现象的数学描述都是用微分方程来表述的。它们是描述基于函数导数的函数的方程,用于模拟计算流体动力学、量子力学和电磁学等领域的各种物理现象,也用于金融、化学、生物和许多其他领域 [8]。例子包括物理学中的热方程、波动方程和薛定谔方程、金融中的布莱克-舒尔斯方程以及化学中的反应扩散方程。由于它们是一种广泛使用的工具,因此研究如何使用量子算法来求解微分方程以及它们是否能比传统方法提供更快的速度是很有意义的。我们将首先简要了解线性微分方程,特别是泊松方程,以及它们离散化为线性方程组,然后介绍量子线性系统求解器 (QLSS) 并将其与经典方法进行比较。
■ 图灵机 ■ 量化计算资源 ■ 复杂性类别 ■ 量子计算简介:历史视角 ■ 量子计算模型 ■ 电路符号和量子门 ■ 量子门的通用集 ■ Solovay-Kitaev 定理 ○ 量子预言机 ○ 预言量子算法:
用于微分方程求解、数据处理和机器学习的量子算法可能比所有已知的经典算法提供指数级加速。然而,在有用的问题实例中获得这种潜在加速也存在障碍。量子微分方程求解的基本障碍是输出有用信息可能需要困难的后处理,而量子数据处理和机器学习的基本障碍是输入数据本身就是一项艰巨的任务。在这项研究中,我们证明了,当结合起来时,这些困难可以相互解决。我们展示了量子微分方程求解的输出如何作为量子数据处理和机器学习的输入,从而允许在主成分、功率谱和小波分解方面进行动态分析。为了说明这一点,我们考虑了流行病学和社会网络上的连续时间马尔可夫过程。这些量子算法比现有的经典蒙特卡罗方法具有指数级优势。