电子微探针成像和定量成分映射:73002连续芯的抛光薄片(PTS)分布成50×25 mm的雷果石环氧粒粒度。使用JSC的键性光学显微镜系统获得这些PT的镶嵌光学图像图。随后使用华盛顿大学的JEOL JXA-8200电子微探针(EPMA)对PT进行映射。在15 kV和2 Na探头电流以70×放大倍率以15 kV和2 Na探头电流获取,并使用ImageJ Fiji fiji Grid缝线插件[3]缝合,以5K BSE MOSAIC基本映射与〜1.5 rigy 〜1.5Mpixel分辨率生成20K,并在70次倍率上获取了大约325张梁杆反向散射的电子(BSE)图像。对于每张73002载玻片,使用固定波长 - 启示光谱仪(WDS)获取五个EPMA阶段图。使用固定的10°M电子束在15 kV下,使用9.5 m电子束在1024×1024分辨率下进行每个阶段地图,并使用停留时间为25毫秒。在Pass 1中使用两次通过,以收集Mg,Al,Fe,Ca和Ti的X射线强度,而Na,Si,Mn,Mn,K和Cr在Pass 2中,总收购时间为18小时。每张地图。每张地图。
高级微分析致力于为客户提供宝贵的答案和见解,而不仅仅是盲目数据。我们的客户可以找到一个响应迅速,有益的合作伙伴,以满足其组成分析需求。通过我们的实验室网络和多样化的科学人员,高级微分析可以找到正确的测试和信息资源的组合,以帮助您识别或量化您感兴趣的综合信息。从通过DMA,TGA,MFI或底环机械性能通过热和机械性能之间的组成与内在性质之间的相关性,可以直接识别许多复杂的混合物。无损或最小破坏性技术,例如表面GD-OES,XRF,XRD和光谱技术,可以在材料中的某些或所有组件上详细介绍。可以通过使用LC-MS,ICP-MS,GC-MS和NMR的色谱和化学消化来分析复杂的混合物。
pia.schweizer@cea.fr电子探针微分析(EPMA)是一种可靠且广泛使用的技术,可用于对科学和工业应用进行非破坏性,准确的材料表征。尽管对锂具有极大的兴趣(LI),并且迫切需要在微米级进行准确的非破坏性分析,但使用EPMA对LI的LI量化尚未成功进行。最近开发的周期性多层允许围绕特征性的li k发射〜50 eV [1]的能量范围的光谱,但是配备有弯曲的晶体光谱仪和标准商业化多层的微型探针检测和定量没有衍射光栅仍然具有挑战性。LI检测的困难是由不同的因素引起的:LI的荧光产量极低,很少有Li 1S核心孔的衰减产生的特征光子,有利于螺旋电子的发射。由于其低能量,光子甚至在离开样品及其最终涂层之前就被强烈吸收。因此,信号主要来自可能受到污染的薄表面层,并且可能对电子轰击敏感。微探针成分,尤其是通过分离窗口的进一步吸收光子,将降低测得的强度。由于Li K发射(2p - 1s转变)涉及价电子,因此Li发射带的形状高度依赖于价带中的状态密度(DOS),并且高度依赖于锂原子的化学状态。SCI。 2021,11,6385。 2022,51(4),403。SCI。2021,11,6385。2022,51(4),403。某些EV和强峰形变化的化学位移可能会发生,对于光元的EPMA应该是预期的[2,3],使定量分析变得复杂。这项工作显示了不同材料中LI定量EPMA的一些有希望的结果,包括电池化合物和LI浓度降至2%的金属合金。在整合新检测系统以及使用适用于低压EPMA的实际标准和校正程序进行定量程序之后,这是可能的。即使需要进行额外的调查,研究人员的锂表征也引起了极大的兴趣。我们表明,即使EPMA包含在重矩阵中,EPMA是对LI进行定量分析的强大工具,其元素显示出与LI相同的光谱范围内的特征发射带。这种新颖的LI量化方法比使用SEM或配备了多层光栅的ENER或电子微探针检测到其他技术更容易访问,并且比检测更便宜。[1] Polkonikov,V.,Chkhalo,N.,Pleshkov,R.,Giglia,A.,Rividi,N.,Brackx,E.,Le Guen,K.[2] Schweizer,P.,Brackx,E.,Jonnard,P。,X射线光谱。[3] Hassebi,K.,Le Guen,K.,Rividi,N.,Verlaguet,A.,Jonnard,P.,X-Ray Spectrom。(http://doi.org/10.1002/xrs.3329)在印刷中。
课程描述 本课程专为具有材料科学与工程、物理学、地球科学、化学、生命科学或相关领域背景的学生而设计。本课程专门为以下学生设计:a) 学习 SEM 成像、衍射和光谱学的基本原理;b) 了解电子-样本相互作用、信号产生和检测;c) 正确解释各种类型的图像和相关的 X 射线光谱和衍射图案;d) 掌握适当的技能来解决实际材料的各种图像和微分析问题。本课程的学习成果包括 i) 理解关键概念和基本原理,ii) 正确选择适当的电子束参数(例如电压、电流、探针尺寸和焦深)以研究不同类型的材料(例如导体、半导体、绝缘体或聚合物),以及 iii) 了解如何消除图像、光谱和衍射图案中的伪影。希望学生专注于解决问题的技能,并熟练地利用现代 SEM 来解决具有挑战性的材料研究问题和产品开发问题。课程内容 本课程首先介绍电子束-样品相互作用,以及此类相互作用如何产生不同类型的有用信号,这些信号携带样品特定信息(形态、结构、元素分布等)。然后将广泛讨论影响各种类型电子探针形成的参数(例如高分辨率成像与微分析)。接下来将讨论不同类型的电子和X射线探测器以及如何使用这些探测器形成可解释的图像和/或光谱。在学期的第一部分,重点是理解探针形成和图像解释的基本原理,重点是如何为特定类型的样品选择合适的电子光学参数。在学期的第二部分,我们将讨论通过X射线对异质样品进行定性和定量成分分析、通过电子背散射衍射(EBSD)图案获取晶体材料的结构信息,以及如何使用低电压(低至数十伏)或可变压力SEM对非导电或湿样品进行成像。将讨论双光束 FIB-SEM(电子和聚焦离子束)显微镜和现代 SEM 中的原子分辨率成像。讲座时间:周一/周三下午 12:00-1:15;地点:CVAC 333(和 ASU Online);讲师:Jingyue (Jimmy) Liu 博士(https://isearch.asu.edu/profile/1816322);办公室:PSF 432A;电子邮件:jliu152@asu.edu。
岩石和矿物组合是三维(3D)结构,但是用于检查和解决它们的传统微分析技术,例如基于扫描电子显微镜(SEM)自动化定量矿物学(AQM)或传统的光学岩石学本质上是2D。这些技术的普遍性是可以理解的,因为它们具有很高的分析精度和可靠性,但是它们的2D性质限制了研究人员可用的见解,以及他们进行定量评估的能力。
化学工程专业以外提供的研究生选修课通常包括:• EMA 6001 材料特性 - 概述• EMA 6105 表面科学基础与应用• EMA 6265 聚合物的机械特性• EMA 6412 电子材料的合成与表征• EMA 6507 扫描电子显微镜与微分析 + EMA 6507L 扫描电子显微镜与微分析实验室• EMA 6510 材料分析技术概述• EMA 6516 材料表征的 X 射线方法 + EMA 6516L 材料表征的 X 射线方法实验室• EGS 6101 发散思维• EMA 6518 透射电子显微镜 + EMA 6518L 透射电子显微镜实验室• EMA 6580 生物材料科学• BME 5703 生物医学工程的统计方法• BME 5704 生物医学工程高级计算方法 • BME 6330 细胞和组织工程 • BME 6705 生物和生理系统的数学建模 • EGM 5584 软组织生物力学 • EGM 6855 生物流体力学和生物传热 • PHC 6002 传染病流行病学 • PHC 6003 慢性疾病和残疾流行病学 • RSD 6401 衰老和疾病中的骨骼肌及其对康复的影响 • STA 6166 研究中的统计方法 I • STA 6167 研究中的统计方法 II • STA 6208 实验的基本设计和分析 • GMS 6841 生物医学科学转化研究的设计和分析
材料与技术介绍,结构分析工具:X射线衍射:相位识别、索引和晶格参数确定、使用各种模型进行分析线轮廓拟合、中子衍射、反射高能电子衍射和低能电子衍射;显微镜技术:光学显微镜、透射电子显微镜(TEM)、能量色散X射线微分析(EDS)、扫描电子显微镜(SEM)、卢瑟福背散射光谱(RBS)、原子力显微镜(AFM)和扫描探针显微镜(SPM);热分析技术:差热分析(DTA)、差示扫描量热法(DSC)、热重分析(TGA);电气表征技术:电阻率、霍尔效应、磁阻;
我们首次使用微型降低方法来证明高渗透稀土(RE)铝钙晶(Realo 3)的晶体生长,以告知未来对功能晶体的探索。为了确定组成如何影响相形成,我们从下面的列表中制定了包含五个RES的等值组成分:LU,YB,TM,ER,Y,HO,HO,HO,DY,TB,TB,GD,GD,GD,EU,SM,SM,ND,ND,PR,PR,CE,LA。要测试RES与相似的离子半径的组合是否可能有利于单相的组合物,含有连续或非连续离子半径值的RES的组成。粉末和单晶X射线衍射表明,仅包含具有相似离子半径的晶体,形成正骨单次真实3是单相。含有不同离子半径的RES或RES的混合物的晶体,即形成正骨,菱形和四方单人REARO 3的晶体是相的混合物。 通过电子探针微分析分析的单相晶体中的元素分布证实没有优先掺入任何组成部分的证据。 通过扫描电子显微镜和能量色散光谱法分析了次级相的分布和组成;次级相被视为晶体中心的一个小区域,其分支特征更靠近外表面。晶体,即形成正骨,菱形和四方单人REARO 3的晶体是相的混合物。通过电子探针微分析分析的单相晶体中的元素分布证实没有优先掺入任何组成部分的证据。通过扫描电子显微镜和能量色散光谱法分析了次级相的分布和组成;次级相被视为晶体中心的一个小区域,其分支特征更靠近外表面。