Extractearth首席执行官彼得·马布森(Peter Mabson)表示:“我们很高兴将Esail添加到我们行业领先的全球海事卫星星座中。它的功能将使我们能够继续推进海上船只跟踪和数据服务的最先进,并为将来的能力铺平道路。我要感谢ESA和Luxspace及其卫星制造团队在生产这款尖端微卫星方面的成就。”关于卢森堡航天局
以抗程序性死亡受体 1(PD-1)为代表的免疫检查点抑制剂已被证明在治疗各种实体恶性肿瘤方面具有显著效果(1-4)。然而,抗 PD-1 在转移性结直肠癌中的作用通常仅限于微卫星不稳定性高(MSI-H)或错配修复缺陷(dMMR)的转移性结直肠癌患者,这类患者仅占转移性结直肠癌患者的 4.6%(5)。大多数转移性结直肠癌患者是微卫星稳定(MSS)或错配修复功能正常(pMMR),可能无法从免疫检查点抑制剂单药治疗中获益。目前,针对血管内皮生长因子(VEGF)或血管内皮生长因子受体(VEGFR)的生物制剂,包括贝伐单抗和瑞戈非尼,用于治疗转移性结直肠癌(6,7)。呋喹替尼是一种 VEGFR 阻断剂,可使肿瘤血管正常化,并与细胞毒药物和抗 PD-1 药物联合使用,产生协同抗肿瘤作用 (8,9)。呋喹替尼已获得中国食品药品监督管理局批准,用于治疗已接受过至少两种标准抗肿瘤疗法的转移性结直肠癌患者 (10)。
人类基因组内特定位点的异常微卫星重复扩增会导致几种不同的、可遗传的、主要为神经系统的疾病。由于细菌载体中此类重复的不稳定性,尤其是大量重复扩增,因此创建这些疾病的模型是一项挑战。设计用于更精确的基因组工程项目(例如工程敲入小鼠)的构造体被证明是一项更大的挑战,因为这些不稳定的重复需要大量的克隆步骤才能引入同源臂或选择盒。在这里,我们报告了我们在 C9orf72 基因中克隆大型六核苷酸重复的努力,该基因源自 BAC 构造体,源自 C9orf72 -ALS 患者。我们提供了详细的方法,用于有效确定细菌中的重复大小和生长条件,以促进生长和亚培养期间的重复保留。我们报告说,亚克隆到线性载体中可显著提高稳定性,但取决于 DNA 复制通过重复的相对方向,这与之前的研究一致。我们设想这里提出的研究结果将提供一种相对简单的途径来维持大范围的微卫星重复扩增,从而有效地克隆到载体中。
缩写:BRAF V600E,BRAF 蛋白 600 位上缬氨酸 (V) 取代为谷氨酸 (E);CI,置信区间;dMMR,错配修复缺陷;Her2,人类表皮生长因子受体 2;IHC,免疫组织化学;MSI-H,微卫星不稳定性高;mut/Mb,每兆碱基突变数;NGS,下一代测序;PD-1,程序性死亡 1;r/r,复发/难治;TMB-H,肿瘤突变负担高;TRK,酪氨酸受体激酶。
抗癌药物组合可克服耐药性并提供新的治疗方法 1,2。可能的药物组合数量远远超过临床上可以测试的数量。系统地确定活性组合及其最有效的组织和分子环境的努力可以加速联合治疗的开发。在这里,我们评估了 2,025 种临床相关的双药组合的效力和功效,生成了一个包含 125 种分子特征的乳腺癌、结直肠癌和胰腺癌细胞系的数据集。我们表明药物之间的协同作用很少见且高度依赖于环境,而靶向药物的组合最有可能产生协同作用。我们结合多组学分子特征来识别组合生物标志物并指定协同药物组合及其活性环境,包括基底样乳腺癌和微卫星稳定或 KRAS 突变型结肠癌。我们的结果表明,伊立替康和 CHEK1 抑制在微卫星稳定或 KRAS – TP53 双突变结肠癌细胞中具有协同作用,导致细胞凋亡并抑制肿瘤异种移植生长。本研究确定了不同分子亚群中临床相关的有效药物组合,并可作为指导合理开发组合药物治疗的资源。
自从发现复制后不匹配校正和遗传性非polyposis结肠癌的故障之间存在联系以来,对这一复杂修复途径的研究引起了很多关注。通过保存从微生物到人类的这一过程的主要主角来促进我们对哺乳动物系统的理解。因此,用大肠杆菌提取物进行的生物化学实验有助于我们鉴定细菌不匹配修复蛋白的功能性人类同源物,而酿酒酵母的遗传学有助于我们对人类细胞表型在匹配校正中有效的表型的理解。今天,不匹配修复不再仅仅将其视为负责纠正复制误差的机制,而复制误差的失败以突变器表型和微卫星不稳定性的形式表现出来。马力也与有丝分裂和减数分裂重组,药物和电离辐射抗性,转录耦合修复和凋亡有关。阐明不匹配修复蛋白在这些转导途径中的作用是我们理解不匹配校正在人类癌症中的作用的关键。但是,为了揭示复制后不匹配的所有复杂性,我们需要了解各个参与者的演员阵容和角色。本简短的论文概述了我们当前对此过程生物化学的了解。关键字:凋亡/耐药性/遗传性非息肉病结肠癌/微卫星不稳定性/不匹配修复
综合基因组分析 (CGP):综合基因组分析是一种下一代测序方法,能够检测新的和已知的变异,包括所有类别的基因组改变(碱基替换、插入和缺失、拷贝数改变和重排)和基因组特征(如肿瘤突变负担 [TMB] 或血液 TMB、微卫星不稳定性和杂合性缺失),以提供预后、诊断和预测见解,为所有癌症类型的个体患者提供治疗决策信息。
化学性侵犯转移性结直肠癌(MCRC)的患者预后不佳。使用程序性细胞死亡蛋白1(PD-1)/程序性细胞死亡配体1(PD-L1)抑制剂的应用鼓励改善MCRC微卫星不稳定性高(MSI-H)/不匹配修复维修剂(DMMR)的生存。不幸的是,对于MCRC而言,微卫星稳定(MSS)/优先不匹配修复(PMMR)无效,占MCRC的95%。放射疗法可以通过直接杀死肿瘤细胞并诱导阳性免疫活性来促进局部控制,这可能有助于协同进行免疫疗法。我们介绍了一名先进的MSS/PMMR MCRC患者,该患者在第一线化学疗法,姑息手术和二线化学疗法结合靶向疗法后患有进行性疾病(PD)。然后,患者接受了PD-1抑制剂的疗法,结合了放射疗法和粒细胞 - 巨噬细胞刺激因子(GM-CSF)。根据实体瘤版本1.1(recist1.1)的反应评估标准,该患者在三年后与无进展生存期(PFS)的三重疗法后显示了完全反应(CR),迄今为止已有2年以上的时间。患者除疲劳(1级)外没有其他明显的不良反应。三合一疗法为转移性化学难治性MSS/PMMR MCRC患者提供了有希望的策略。
a 发现指在任何肿瘤类型中首次发现。b 可操作性基于对该生物标志物定义的疗法的首次肿瘤不可知论批准。BRAF,v-raf 鼠肉瘤病毒致癌基因同源物 B1;CCA,胆管癌;CRC,结直肠癌;dMMR,缺陷错配修复;FDA,美国食品药品监督管理局;MSI,微卫星不稳定性;NTRK,神经营养酪氨酸受体激酶;RET,ret 原癌基因;TMB,肿瘤突变负担。
微卫星基因座仍然代表着研究非模型或Ganism的人口生物学的宝贵资源。发现或适应感兴趣的物种中的新合适的微卫星标记仍然是一项有用的任务,尤其是对于非模型生物作为采集果蝇(Glossina属),这仍然是对撒哈拉以南非洲人类和动物健康的严重威胁。在本文中,我们介绍了四种Glossina种类的新微卫星基因座的开发:来自摩西丹组的两个,来自津巴布韦的G. Morsitans Morsitans(GMM),G。Pallidipes(Gpalli),来自坦桑尼亚;还有来自帕尔帕里斯集团的其他两个,来自乍得的G. fuscipes fuscipes(GFF),以及几内亚的G. palpalis gambiensis(gpg)。我们发现频繁的短等位基因优势和无效等位基因。也可以在可能的情况下找到并修改。神秘的物种似乎在所有分类单元中都发生了频率。这解释了为什么很难找到普遍的引物,因此需要根据每个分类学和地理环境进行适应。放大问题在已发表的旧标记中更常见,而GMM和GPG受到影响最大(杂合差较强)。三核苷酸标记在某些情况下显示选择签名(GMM)。最后,迄今为止研究的采集蝇的非Y DNA量和染色体结构来解释了X连锁标记的高比例(约30%)。将旧基因座组合起来,对于GMM,可以安全地使用八个基因座(对无效等位基因进行校正);五个似乎特别有希望。对于GPALLI,只有五到三个基因座效果很好,具体取决于进化枝,这意味着使用其他物种的基因座(四个Morsitans loci似乎效果很好),或者需要使用其他新的引物;对于GFF来说,14个基因座表现良好,但是有无效的等位基因,其中7个效果很好。对于G. palpalis SL来说,只有四个基因座,需要无效的等位基因和口吃校正,似乎需要效果很好,因此需要其他文献中的其他基因座,包括X连锁标记,其中五个似乎效果很好(仅在女性中),但是新标记可能需要新的标记。