微管抽吸(MPA)是量化生物样品的18种机械性能的黄金标准之一,从细胞膜尺度到多细胞19组织至关重要。然而,依靠对单个自制玻璃移液管的操纵,MPA 20遭受低吞吐量和无自动化的影响。在这里,我们介绍了滑动插入21个微目抽吸方法(SIMPA)方法,该方法允许并行化和自动化,这要感谢22在微流体通道内通过光刻术获得的管状移液器的插入。23我们通过探测囊泡来测量24个膜弯曲和拉伸模量,以及通过量化3D细胞聚集体的25个粘弹性来显示其在脂质双层水平上的应用。这种方法为高通量开辟了道路,在动态物理化学刺激下,从囊泡和27个单个细胞到细胞聚集体到细胞聚集体和外植物的多种生物样品的定量机械测试。28
趋势Micro Incomporated保留对本文档和本文所述的产品进行更改的权利,恕不另行通知。在安装和使用该软件之前,请查看发行说明和最新版本的适用用户文档,可从趋势Micro网站上获得:
背景:糖尿病性视网膜病(DR)是威胁性糖尿病的微血管并发症。慢性炎症和内皮功能障碍是疾病发病机理中的关键因素。因此,为减少视网膜炎症而开发的干预措施预计将对DR的预防和治疗有益。在本研究中,我们开发了一类具有有效抗炎活性的无药肽的纳米杂化剂,并研究了其在氧气诱导的视网膜病变(OIR)小鼠模型和链蛋白酶(STZ)诱导的糖尿病小鼠模型中治疗DR的治疗功效。方法:六肽被用于修饰金纳米颗粒以形成基于药物的基于药物的纳米杂交(P12)。然后,我们检查了p12在HUVEC和BV2细胞中的理化特性和抗炎活性,并确定了这种新型生物活性的关键氨基酸。应用玻璃体内和恢复轨道注射以确定P12的最佳视网膜输送途径。使用OIR模型和STZ诱导的糖尿病模型研究了p12治疗DR的治疗功效。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。 此外,还使用体外实验来探索p12抗炎活性的基本分子机制。 结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。 此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。通过免疫组织化学和流式细胞仪分析,我们确定了在视网膜中内化p12的主要细胞。此外,还使用体外实验来探索p12抗炎活性的基本分子机制。结果:我们发现P12在HUVEC和BV2细胞中均表现出有效的抗炎作用。此外,可以通过玻璃体内注射有效地将p12有效地输送到视网膜。玻璃体内注射的p12显着改善了早期DR症状,包括STZ诱导的糖尿病小鼠的血管泄漏和周细胞损失。它还抑制了OIR小鼠的病理新生血管形成和视网膜出血。重要的是,我们发现玻璃体内注射的p12主要由小胶质细胞和内皮细胞吸收,从而导致视网膜内皮炎症和DR动物模型中的小胶质细胞激活减少。机理研究表明,p12在内皮细胞和小胶质细胞中都有效抑制了几种TLR4下游信号通路,例如NF-κB,JNK和P38 MAPK。这种效应是由于p12在阻止内体TLR信号转导的内体酸化过程中的能力。结论:我们的发现表明,局部注射经过适当设计的,无药,基于肽的纳米杂交可以作为治疗DR的安全有效的抗炎纳米医学。
这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。通信:Matthias Kretzler,华纳 - 兰伯特/帕克戴维斯戴维斯教授,医学/肾脏科学和计算医学与生物信息学,密歇根大学,1560毫秒II,1150 W Medical Center DR-SPC5676,Ann Arbor,密歇根州Ann Arbor,密歇根州48109-5676,美国。kretzler@umich.edu。披露MK报告来自国立卫生研究院(NIH)的赠款;密歇根大学的非财务支持;通过密歇根大学的资金,来自Goldfinch Bio,Boehringer-Ingelheim,Certa,Travere和Maze Therapeutics的资金;以及通过密歇根大学(NIH)与NIH,Chan Zuckerberg计划,JDRF,Roche,Roche,Roche,Astrazeneca,Novo Nordisk,Moderna,Moderna,Chinook Innovication Medicine,Chinook,Angion Pharmaceuticals,Renalytixai,Eli Lilly Lilly,Regenern,Renderean,Jenansissen,Inioniss,Inioners和J.通过Astellas,Poxel,Janssen和Novo Nordisk的密歇根大学通过密歇根大学的咨询费用;并在NIH - 国际促进转化科学中心(NCATS)理事会和肾脏肾脏国际委员会任职。此外,MK和WJ还具有授权专利,PCT/EP2014/073413“生物标志物和用于进展预测的慢性肾脏病”。 HT报告肾脏策略有限责任公司的就业。他与Aclipse,Angion,Goldfinch Bio,Maze Therapeutics,Natera(Renasight),Otsuka(数据安全监测委员会[DSMB]儿科试验主席),Travere Therapeutics,Inc,Boehringer-ingelheim,eppepv和phasev和eppepv and phasev和walder;以及参加由Astellas和Reata组织的肾小球疾病板的荣誉症。他是DUPRO的指导委员会和科学顾问委员会(Duplex [Sparsentan研究,对主要局灶性节段性肾小球硬化症患者的研究{FSGS}],并保护[Sparsentan对IGA Nephropathy试验患者治疗的Sparsentan对治疗的影响和安全性的研究)他是肾脏健康计划董事会成员;儿科肾病,肾小球疾病和肾脏360的编辑委员会成员;并担任Nephcure肾脏国际的合作伙伴,致力于促进小儿参与肾小球疾病(Pioneer)的临床试验。LB报告了NIH,国家糖尿病与消化研究所和肾脏疾病(NIDDK)和国家癌症研究所(NCI)的当前工作之外的赠款;来自Elsevier-DP4Kidney的特许权使用费/许可;来自Vertex,Protalix和Sangamo的咨询费;以及基于DL的多站点的多个二次分割的专利。 她还在国际肾小球疾病学会的指导和临床试验委员会中。 se报告与Novo Nordisk,Astrazeneca,Gilead Sciences Inc,Janssen Pharmaceuticals,Eli Lilly and Company,Travere Therapeutics,Certa,Boehringer Ingelheim,Angion,Angion,BioMedica,BioMedica,Regeneron,Roche和Chinook通过Michigan大学。 LBH报告了当前工作之外的NIH的资金。 WJ通过密歇根大学获得了欧洲委员会的资金; Travere Therapeutics的咨询费;国际肾脏病学会的旅行支持;并且是美国肾脏病学会的成员。 CG得到了NIDDK的资金来支持这项工作。LB报告了NIH,国家糖尿病与消化研究所和肾脏疾病(NIDDK)和国家癌症研究所(NCI)的当前工作之外的赠款;来自Elsevier-DP4Kidney的特许权使用费/许可;来自Vertex,Protalix和Sangamo的咨询费;以及基于DL的多站点的多个二次分割的专利。她还在国际肾小球疾病学会的指导和临床试验委员会中。se报告与Novo Nordisk,Astrazeneca,Gilead Sciences Inc,Janssen Pharmaceuticals,Eli Lilly and Company,Travere Therapeutics,Certa,Boehringer Ingelheim,Angion,Angion,BioMedica,BioMedica,Regeneron,Roche和Chinook通过Michigan大学。LBH报告了当前工作之外的NIH的资金。WJ通过密歇根大学获得了欧洲委员会的资金; Travere Therapeutics的咨询费;国际肾脏病学会的旅行支持;并且是美国肾脏病学会的成员。CG得到了NIDDK的资金来支持这项工作。DSG报告了NIH的过去研究资金,疾病控制与预防中心,美国食品和药物管理局,Travere Therapeutics,Reata,Novartis和Boehringer Ingelheim;从Roche/Genentech和Vertex支付给密歇根大学的过去咨询费;过去参加DSMB的NIH;是肾脏研究网络协调中心的前任主任; and being the unpaid project colead of the National Kidney Foundation improving vaccination in the kidney disease community project, the past colead of the Kidney Health Initiative Pediatric IgA nephropathy project, the past member of the Kidney Health Initiative FSGS outcomes project, and the past planning committee member for the NephCure- and Kidney Health Initiative–sponsored workshop entitled Pathways to SGLT2i for renoprotection在小儿CKD中。JRS报告了NCAT,NIDDK和Nephcure Hidney International的资金,以支持这项工作,NIDDK,Calliditas,Niaid/Immuna Tolerance Network,Chinook和Chinook和Vertex在这项研究中。他已从赛诺菲获得了特许权使用费或许可费; Boehringer Ingelheim的咨询费;美国发行的专利美国/11,645,753,“使用肾脏活检全幻灯片图像进行基于深度学习的多站点的多站点,多个肾脏病理学的分割”,《发明披露》“用于APOL1相关的肾脏疾病和前宾夕法尼亚的转基因小鼠模型”;和主持肾脏X肾脏创新加速器的指导委员会。WRU已获得NIH和Boehringer Ingelheim International Gmbh/certa Therapeutics/Travere Therapeutics Inc的资助,并获得了NIH U01研究的共同评估者和2次R01研究,与本文无关。她是美国人类遗传学会和遗传咨询杂志编辑委员会委员会成员。lhm报告了NIDDK和NCAT的赠款,以支持本文,以及Boehringer-Intelheim,Travere Therapeutics和Reliant Glycosciences的Boehringer-Intelheim赠款,与密歇根大学与本研究无关。她曾在Reata Pharmaceuticals,Calliditas Therapeutics和Travere Therapeutics的顾问委员会任职;并以ASN ACP,Travere,Calliditas和Chinook Therapeutics为顾问委员会成员或相关演讲的Honoraria。在这项工作之外,她期望获得Vertex的咨询费;并且是NIDDK-KUH(肾脏,泌尿科和血液疾病的部门)COVID试验DSMB成员和美国肾脏学会的理事会成员。所有其他作者都不宣布竞争利益。
预印本(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此版本的版权持有人于2025年2月14日发布。 https://doi.org/10.1101/2025.02.11.637773 doi:Biorxiv Preprint
引言 - 肌肉指导的基因疗法迅速引起注意,主要是因为肌肉是易于访问的目标组织,并且也与各种严重的遗传疾病有关。几种血清型的重组腺相关病毒(RAAV)向量的局部和全身传递导致骨骼和心脏肌肉的有效转导非常有效,这在小动物以及人类中都实现了。肌肉是许多肌肉营养不良疾病的基因治疗中的靶组织,也可以被用作生物疗法,以产生全身性疾病的分泌因素。使用RAAV进行肌肉基因转移的当前局限性包括载体尺寸限制,诸如靶向毒性的潜在安全问题以及既有中和的中和抗体的免疫屏障组成,以及针对人类AAV Capsid的CD8 + T细胞反应。
摘要:自2008年以来的全球金融危机恢复了关于是否以及金融发展在多大程度上促进经济增长的辩论。本文回顾了有关这种联系的不同理论学校和经验发现,我们旨在在小型开放经济环境中开发统一的,微型基础的模型,以适应各种理论的可能性和经验观察。然后对模型进行校准,以匹配一些有据可查的风格化事实。数值模拟表明,从长远来看,福利 - 最大化金融发展水平低于增长最大化水平。在短期内,价格渠道(通过世界利率)主导了数量通道(通过金融生产率),这表明国际合作在应对全球金融体系的系统性风险方面起着至关重要的作用。
此材料的间隙允许减少设备尺寸,权重和切换损耗[2]。此外,SIC的高温导热率促进了其在恶劣环境中的使用,例如用于核应用的电源开关(空间,航空,核反应堆和军事)。然而,尽管刚刚设计了第四代SIC MOSFET,但其对空间应用的采用却很少见[3],[4]。尽管SIC材料具有稳健性,但仍证明了由于空间环境辐射引起的灾难性影响[2-3]。SIC设备对单事件倦怠(SEB)[7] - [10],单事件门破裂(SEGR)[11],[12]和单个事件泄漏电流(SELC)[13]敏感。在SIC MOSFET中,由于极端的内部漏极到通过SIC源电场,不合适的电流会诱发热失控。这种现象可以导致功率设备的故障和设备功能的损失。对于破坏性SEB,主要粒子(作为中子,质子或离子)会对设备产生影响,因此可以在内部产生电离二级粒子。沿着该二次粒子,电子和孔对的轨迹。由于对SIC的电场比SI MOSFET中的电场高10倍,因此SIC中的功率密度高100倍,并触发冲击电离。强烈的局部局部,因此高密度电流会产生热瞬态和失控,从而导致灾难性失败。在本文中,对质子辐射引起的SEB诱导的COTS包装的SIC MOSFET的失败分析在设备和死亡水平上呈现。在辐射期间和电辐射应力期间的粒子性质[14],[15],[15],[15],[15],能量转移(LET)[8],设备技术[7],偏置电压(V DS和V GS)[16],[17]的影响。先前的研究表明,由于MOSFET漂移层中电场的增加,SEB灵敏度随施加的漏气偏置(V DS)而增加[16],[17]。在[18]中,作者提出了损害类型(氧化物潜在损害,降解,晶体潜在损害和SEB)类型的地图,作为V DS和LET的函数。在灾难性失败的顶部,对于未表现出SEB的质子辐照的设备,在辐射后应激测试中观察到了辐照诱导的氧化氧化物降解[19]。和重型离子,在SIC MOSFET裸露的SIC Seb区域进行了辐射后v ds扫描后,SiC晶格的分解被揭示[18]。建立了一个故障分析流程图,在每个步骤中介绍了结果,分析和风险评估(用于成功分析)。在分析电I-V特性后,用能量分散性X-射线光谱法(EDX)进行了扫描电子显微镜(SEM)研究,揭示了SIC模具中的局部微探索现象。基于对热爆炸的痕迹的分析,制定了微探索的解释。
拉曼光谱法(RS)是一种众所周知的技术,它广泛用于物理化学,材料物理,生物学,工程甚至行星探索的广泛领域。rs已成为表征材料的化学成分和分子结构的主要工具之一。有关缺陷性质,材料的结晶或无定形特征以及该技术的大量信息。在本期中,原始论文和评论文章尤其有望表明RS在诸如以下主题中的兴趣: - 控制材料的制备,例如薄膜,纳米和微结构材料,以及提高其质量; - 掺入点缺陷的探测和缺陷结构的研究; - 与相变的联系(共存阶段,相变); - 属性的增强(机械,电子,光学等)通过更好地了解结构。此问题可以概述该重要工具在物理和化学不同领域中的各种应用。