摘要 - 到现在,我们目睹了半导体行业的微型化趋势,并得到了纳米级表征和制造方面的开创性发现和设计的支持。为了促进趋势并产生越来越小,更快,更便宜的计算设备,纳米电子设备的大小现在达到了原子或分子的规模,这无疑是对新型设备的技术目标。随着趋势,我们探讨了在单个蛋白质分子上实施储层计算的非常规途径,并具有小型世界网络特性的介入神经形态连接。我们选择了izhikevich尖峰神经元作为电子处理器,与Verotoxin蛋白的原子相对应,其分子作为连接处理器的通信网络的“硬件”结构。我们在单个读数层上申请,以监督方式采用各种培训方法来研究分子结构化储层计算(RC)系统是否能够处理机器学习基准。我们从基于峰值依赖性塑性的远程监督方法开始,并以线性回归和缩放的共轭梯度背部传播训练方法继续进行。RC网络被评估为标准MNIST和扩展MNIST数据集的手写数字图像上的概念概念,并与其他类似方法相比,证明了可接受的分类精度。
电子学是当代科学与工程中发展最快的学科之一。由于对微型化和集成化的不断追求,大多数电子元件都是在所谓的微型尺度上设计和制造的。出于这个原因,专业人士中建立了微电子学这个专业术语。如今,微电子元件是每种工业或家用电子设备不可或缺的一部分。不幸的是,像其他设备一样,微电子元件的使用寿命也是有限的。其可靠性的基本问题之一是连接。在微电子封装[17]中,使用焊接、胶合和键合连接,其中焊点是最重要的[13, 15, 27]。大多数焊点损坏是由于热机械载荷造成的,其直接原因是由于连接材料的热膨胀系数不匹配而产生的应力[17, 35, 40]。据估计,微电子封装中约 65% 的损坏与热机械问题有关 [2, 38]。可靠性被定义为物体在给定环境条件下、在一段规定时间内正常运行的属性。可靠性的数学描述允许在定义的操作条件下评估物体故障的概率。电子封装接头可靠性预测的传统方法之一是基于所谓的双材料界面的理论分析。双材料界面是指两种具有不同热机械性能的材料之间的机械连接。
在近几十年内,可编程光子学领域已经显着提高,这是对复杂应用的不断增长的驱动,例如光量子计算和光子神经网络。但是,随着这些应用的复杂性的增加,对新型设计的需求越来越多,可以增强电路传输并实现进一步的微型化。光子波导阵列(WAS)在集成光子学中占有独特的位置,因为它们实现了“始终”哈密顿量,并且在自由空间光学方面没有直接的类似物。他们在各个领域找到了应用,包括光传播研究,量子步行和拓扑光子学。尽管具有多功能性,但缺乏可重构性限制了其实用性,并在很长一段时间内阻碍了进一步的进步。最近,可编程的波导阵列(PWA)已成为克服静态WAS的局限性的有前途的解决方案,并且已证明基于PWA的架构已被证明是通用的。这种观点提出了基于PWA的光子电路的愿景,作为一个新的跨学科领域。我们回顾了PWA的发展历史,并概述了它们在模拟,沟通,传感以及经典和量子信息处理等领域的潜力。这项技术有望随着可编程光子学,纳米制作和量子控制的进步而变得越来越可行。
背景:二维体外细胞培养和动物模型具有限制性,可以解决与人类健康和疾病有关的问题。在三维器官培养中的进步提供了可靠的技术,可以弥合一侧2D单层细胞培养物与另一侧动物模型或人类受试者之间的差距。类器官是体外微型化器官的模型系统,它们概括了与体内相似的ɵSsue特征的复杂组织和函数。重要的是,与原代或永生细胞的培养物相反,类器官是三维的构造,可以在体外自我更新,从而允许膨胀能力,差异和损害修复。类器官技术已经对研究intesintesɵStemnetem aacɵvies,用于建模intesɵnalɵSsue发育和疾病以及个性化医学,药物筛查和重生体外治疗。我们已经开始在含有表皮生长因子/ r-spondin 1/ noggin的器官培养基中使用Matrigelò从小鼠intesɵne建立一个intesɵnal的器官培养系统,并模仿intesɵnal上皮。在这种情况下,我们有兴趣建立intesɵnal类器官,这些器官将用于探索在暴露于阿片类药物,环境毒素或特异性微生物之后,将用于探索intesɵnalCrypt干细胞增殖和差异标记。
摘要:在进行STT-MRAM设备中磁化动力学的研究时,我们采用了自旋漂移 - 扩散模型来解决后跳跃效果。此问题表现为在复合材料的自由层中或合成反铁磁铁中的参考层中的不需要切换 - 随着设备小型化的挑战,这种挑战变得更加明显。尽管这种微型化旨在提高记忆密度,但它会无意中损害数据完整性。与此检查平行,我们对多层结构内界面交换耦合的研究揭示了对Spintronic设备的功效和可靠性的批判性见解。我们特别仔细研究了通过非磁层介导的交换耦合如何影响相邻铁磁层之间的磁相互作用,从而影响了它们的磁稳定性和域壁的运动。这项研究对于理解多层结构中的开关行为至关重要。使用电荷和自旋电流的综合方法,表明对MRAM动力学有了全面的了解。它强调了交换耦合的战略优化,以提高多层自旋设备的性能。预计此类增强功能会鼓励改善数据保留和记忆设备的写入/阅读速度。这项研究标志着高能力,高性能记忆技术的完善方面的重大飞跃。
新材料开发的第一个也是最重要的步骤之一是新化合物的合成,制定或制备。通常,此步骤标志着材料开发的开始,然后是表征(潜在的纯化)和对获得数据的解释。通常,新材料是通过化学反应,修饰或通过制剂/混合不同物质获得的。必须选择符合适当特性的选择材料。通常在当今的研究中,这些合成是由人类(即科学家或技术人员)进行的,他们为不同类别的材料提供了广泛的不同方法。在聚合物领域中主要是经典的有机合成方案,[8]也存在诸如烧结步骤(例如,对于陶瓷),[9]融化过程[10]或Sol-Gel过程[11]或其他材料类别[11]的其他材料类别,例如其他材料类别[11],例如,分别为集体。这种方法具有极大的缺点,即结果和获得的材料在很大程度上取决于进行实验的研究人员以及人们的经验。因此,物质研究数字化的初步方法主要集中在合成的自动化,并行化和微型化以及高通量过程的机会的发展。[12]两种优先方法是基于机器人的合成[13]和流化学[14](包括微流体[15])。前者是基于合成机器人的利用,该机器人可以同时执行各种实验,并具有高精度和高可重复性。相比之下,例如,使用流量化学微反应器,由于Par-Allel实验以及相对较低的所需
纳米电子学是电子学的一个分支,涉及原子或分子尺度上的物质操纵,是近几十年来技术进步的基石。随着微型化、性能提高和能效的不断提升,纳米电子学为从量子计算到可穿戴设备等各个领域的变革性应用铺平了道路。在本文中,我们将探讨纳米电子学的一些新兴趋势及其对未来技术的影响。量子计算代表了计算领域的范式转变,利用量子力学原理执行传统计算机无法处理的计算。量子计算的核心是量子比特,它们可以同时存在于多个状态,实现指数并行,并可能比传统计算机更快地解决复杂问题。在纳米电子学中,量子比特的发展在很大程度上依赖于对单个量子系统(如电子或光子)的精确控制和操纵。人们正在探索各种方法,包括超导电路、捕获离子和基于半导体的量子比特。半导体量子计算的一个有前途的方向是使用硅基量子比特。硅是传统电子学中一种成熟的材料,具有多种优势,包括与现有制造工艺的兼容性和潜在的可扩展性。研究人员正在研究自旋量子比特等技术,这些技术利用硅中电子的固有自旋来实现可靠且可扩展的量子处理器 [1]。
主动的冷冻启动项目将展示一个6个单位(6U)立方体平台的高级热控制系统。将开发一个微型,主动热控制系统,其中将开发从热载荷到辐射器的封闭环中循环的流体。将与该系统集成一个微型低温冷却器,以形成一个两阶段的热控制系统。关键组件将通过使用先进的添加剂制造技术来微型化,从而导致用于证明这些技术的热测试床。以前的立方体任务尚未解决主动热控制系统的问题,也没有任何过去或当前的立方体任务包括低温仪器。这项主动的冷冻表演开发工作将为立方体提供全新的能力,并构成与立方体热控制中最先进的主要进步。活性流体环将支持从热负载中卸下30瓦的30瓦,而商业生产的冷冻机(适用于立方体)将为75-100 K范围的探测器提供冷却。由于低地球轨道(LEO)环境通常对于被动的低温散热器来说太热了,因此使用合并的活性热系统加热方法和冷冻机器将支持未来任务的最大多样性。铝制的超声添加剂制造将用于在立方体的结构机箱内构建流体通道和其他元素,以产生紧凑的系统。
摘要:尽管已经开发了用于总有机碳(TOC)分析的各种方法,但其中大多数通常会消耗大量样品,化学品和能量,因此仅适用于实验室分析。在这项工作中,成功开发了一种新的简单液体电极放电微量液诱导的蒸气产生(MPI-VG),以有效地将水中包含的有机化合物转换为微流体芯片上的CO 2。因此,生成的CO 2与液相分离,并进一步扫除了微型放电光发射光谱仪(μpd-OES),以检测水样中的总有机碳(TOC),通过监测以193.0 nm的碳原子的发射监测碳原子的发射。在最佳条件下,获得0.15 mgl⁻⁻(AS c)的限制的TOC,其相对标准偏差优于3.7%。该系统对环境友好和高效,每次分析仅消耗43μl样品和60μg氧化剂。总分析时间可以大大减少到一分钟。使用淬火测试和气相色谱法仔细研究了反应机制。通过测量海水和河水中的TOC来验证系统的实用性和抗干扰能力。与常规方法相比,由于基于微流体芯片的MPI-VG和μpd-OES的紧凑尺寸,该系统显示出很大的微型化潜力。
屏幕打印电极(SPE)是广泛用于电化学传感器构造中的多功能工具,被认为是设计一次性电分析传感器的有效平台。他们提供了许多优势,包括快速和可靠的分析,高灵敏度,良好的选择性,易用性,微型化,均匀性,可移植性和成本效益。1出现了屏幕打印的概念,以满足对较小,负担得起的电化学设备的需求,从而使这些工具更容易访问和实用。屏幕打印技术通过葡萄糖生物传感器的开发获得了开创性的认可和商业成功。2在2000年代初期,基于SPE的设备的商业化在环境监测,食品安全和医疗保健等领域之间大大扩展。3的可负担性,可移植性和质量生产的易用性使SPE对包括药物和生物学分析在内的不同应用具有极大的吸引力。4个SPE已成功应用于现场检测各种矩阵的各种分析物,从而可以检测药物和其他生物分子。1 SPE的主要优点之一是它们的适应性:它们可以用作一次性,现成的电极或表面修饰以进行专业应用,使其适合于痕量测定生物分子。5,6 SPE技术的最新进步致力于通过整合纳米材料的创新表面修饰策略来提高性能。7修改用于提高灵敏度,提高选择性和总体稳定性的提高。8通常考虑两种主要方法:首先,通过结合聚合物,金属,复合物,酶和其他材料来改变印刷墨水组成,以开发新型的基于墨水的SPE;第二,修改