32. van den Worm, SHE;Valegård, K;Fridborg, K;Liljas, L;Stonehouse, NJ;Murray, JB;Walton, C;Stockley, PG。(1998 年)。MS2 外壳蛋白突变体与野生型 RNA 操纵子片段复合的晶体结构。核酸研究 26:1345-1351。33. Weinbauer, MG。(2004 年)。原核病毒的生态学。FEMS 微生物学评论 28:127-181。34. Wright, A;Hawkins, CH;Anggard, EE;Harper, DR。(2009 年)。治疗性噬菌体制剂在抗生素耐药性铜绿假单胞菌引起的慢性中耳炎中的对照临床试验;初步疗效报告。 Clin Otolaryngol 34: 349-57。35. Yin, S; Kiong Ho, C; Miller, ES; Shuman, S. (2004)。噬菌体 KVP40 和 T4 RNA 连接酶 2 的表征。Virology 319: 141-151。36. Zhang, J; McCabe, KA; Bell, CE. (2011)。与 DNA 复合的λ核酸外切酶晶体结构表明静电棘轮机制可用于加工性。美国国家科学院院刊 108: 11872-11877。
Sierra Space 是少数成功设计、批量生产和发射大型低地球轨道小型卫星星座的公司之一。Sierra Space 根据固定价格合同为 ORBCOMM 第二代 (OG2) 通信星座生产了 18 颗航天器。我们在位于科罗拉多州路易斯维尔的制造工厂生产并集成了有效载荷。在全面生产率下,我们每月提供 3 个成品总线。这些航天器的设计寿命为 5 年,并采用商业行业最佳实践对 B/C 类任务进行任务保证。凭借超过 7 年的在轨性能,该通信星座超出了此次任务的要求。
该平台也是国防部太空测试计划 (STP) 太空测试计划卫星——太空和导弹系统中心/先进系统和发展局 (SMC/AD) 的基础。STPSat- 作为 LEO 的共乘系统,并搭载了五个政府提供的 (GP) 有效载荷。Sierra Space 是 STPSat- VELOCITY 模块化、可重构 ESPA 级总线的主要承包商。Sierra Space 在我们位于科罗拉多州路易斯维尔的设施中设计并建造了航天器总线、集成了 GP 有效载荷并执行了完整的航天器测试和发射/操作支持。自 STPSat 以来,航天器设计不断升级——处理和推进能力得到改进。我们的新型高速处理器显著提高了有效载荷数据吞吐量。
印度空间研究组织 (ISRO) 的 UR Rao 卫星中心 (URSC) 开发了小型卫星平台,该平台通过为地球成像、海洋和大气研究、微波遥感和空间科学任务的有效载荷提供专用平台,实现低成本进入太空,并具有快速的周转时间。
阿尔及利亚通过国家空间技术中心 (CNTS) 选择通过技术转让来发展其技术能力,制定战略来实施空间技术并满足其已知和潜在的需求。Alsat-1 项目将提高用户群体对空间技术益处的认识和理解。阿尔及利亚的第一颗卫星 Alsal-1 是由英国萨里卫星技术有限公司 (SSTL) 与 CNTS 合作设计和建造的。 Alsat-1 轨道的模拟在 C++ 代码和 MATLAB/Simulink 环境中运行,通过在相应时刻重新显示位置和速度矢量。所开发的函数的输出参数在包含开普勒元素的矢量中定义;以及使用 Star! 和 End
从微型卫星到大型卫星,从低轨道卫星到探测航天器,各种用途的卫星都已出现。近年来,采用全电推进的卫星也得到了发展,采用电推进的卫星数量也在逐渐增多。本文主要介绍目前
1. 简介 有效载荷可以通过从地面发射的太空火箭送入轨道,但这并不是唯一可行的解决方案。例如,可以使用机载发射系统到达低地球轨道。[1,2] 中研究了空中发射的好处。这种解决方案可以成为大型航天发射综合体的一种有趣替代方案,特别是因为它可能有利于发射小型有效载荷。此外,对于那些没有自己的太空运输系统或正在寻找一种在发射场和系统机动性方面具有极大灵活性的解决方案的国家来说,拥有一套空中发射入轨系统至关重要。纳米和微型卫星(重量从 1 到 50 公斤)市场的出现使空气辅助火箭发射平台成为此类有效载荷的竞争性解决方案。这种类型的卫星不仅在航天工业巨头国家的财力范围内,而且在个别企业甚至公司的购买力范围内。市场分析显示,2020年约有200颗纳米和微型卫星被发射到不同的轨道。此外,甚至一些大学和研发中心也有兴趣将自己的小卫星发射到太空,以充当研究平台。充当辅助平台的飞机的载重量足以运载能够发射高达50公斤太空有效载荷的火箭。迄今为止,纳米和微型卫星已作为附加的补充有效载荷(所谓的“搭载”)随主要有效载荷发射。值得注意的是,这种系统在军事领域也有应用,例如作为反卫星武器或响应式空中发射。因此,时间和目标轨道取决于订购运输主要有效载荷的一方的要求。作战响应空间应用涉及快速设计和建造军用卫星以供其立即发射,这是另一个值得考虑的市场领域。目前,经典卫星的研发阶段持续 4 至 10 年(微型卫星为 1 - 4 年)。执行空中辅助发射操作需要 1-3 年,这意味着该时间与设计和建造卫星所需的时间相当。2007 年,美国成立了作战响应空间办公室 (ORSO),该机构的任务是建立一个小型卫星“战术”系统,能够提供广泛理解的“支持”武装部队。其另一项任务是
Diwata-2 是菲律宾的第二颗微型卫星,由东北大学、北海道大学、菲律宾大学和菲律宾科技部开发。其主要目的是通过对菲律宾感兴趣的区域进行成像来收集遥感数据。本文介绍了 Diwata-2 的初始地球观测指向性能研究、其姿态确定和控制系统调查、其星跟踪器传感器参数调整、飞行中目标指向校准及其组件的顺序调度,形成了有效的按需地球观测任务的操作策略。该操作策略已成功将卫星的指向性能从最初的 2.88°±2.06° RMS 指向误差提高到其高精度望远镜有效载荷的 0.204°±0.12° RMS 精度。该战略已在大学建造的微型卫星上实施,成功执行了 400 多次地球观测任务,并通过其星载多光谱成像仪有效载荷覆盖了菲律宾约 82.8%的陆地面积。