摘要:存储技术是进一步扩大可再生能源发电的一个新兴要素。分散式微型抽水蓄能电站可以减少电网负荷,并有助于扩大可再生能源。本文为微型抽水蓄能 (MPS) 系统的经济运行建立了有利的边界条件。评估是通过基于泵和涡轮机图的定制模拟模型进行的,这些图由制造商提供,根据研究中建立的规则计算,或使用相似定律扩展。除其他标准外,还评估了使用 11 个泵作为涡轮机、由变频器控制的微型抽水蓄能的技术和经济特性,适用于各种发电和负载场景。经济概念基于一家小公司(例如奶农)通过将光伏系统产生的电力存储在使用泵作为涡轮机的 MPS 中来减少电网的电力消耗。结果表明,由于产生的特定成本高,标称输出超过约 22 kW 且水头超过约 70 m 的系统最有利可图。在最经济的情况下,通过优化系统实现最高盈利能力,平准化电力成本 (LCOE) 达到 29.2 欧分/千瓦时,总存储效率达到 42.0%。
neuchâtel在全球销售的许多产品中都包含高增值组成的组合,在neuchâtel设计,开发和制造,这是微型的专业人士,精确的,可靠的,可靠的,可靠的和超低的能源微型系统。
简单 - 就像通过过滤器抽水一样,直接进入电解质可确保准确的荒地状态和电荷响应状态 - 可以跟踪负载,增加或减少输出,从充电到可靠的毫秒内的充电到放电 - 其他流量电池使用高度敏感的离子膜,相反,redox一个人使用了一个微型的成本,并且更明显地分配了0.5%的
对于小型汽车雷达来说,微型的平面天线,任何雷达系统的头发和眼睛都知道自50年代以来的巨大进展。微带天线阵列被最大的汽车制造商用于雷达[5] - [7],因为重量轻,并且成本低成本制造以用于大量产量,但是它们的主要弱点是由于焦耳效应和狭窄的带宽而导致的能量损失,这限制了在MM-Wave和超越MM Wave和超越斑点天线的使用。然而,在1983年著名的Long实验[9]之后,发现了微带天线的艰苦竞争者和雷达系统的出色候选[8],这是介电谐振器天线(DRA),其中金属散热器被介电材料代替。传统上,介电谐振器成功用于MM波谐振器和微波炉,但没有人想到使用它们来辐射电磁波。
随着物联网,智能制造和医疗设备的快速发展,对各种应用程序中对微型的,高性能和低功耗的需求不断提高。微电机机械系统(MEMS)是微型设备,它们在显微镜下整合机械和电气组件,通常在1至100微米之间。MEMS已成为一种关键解决方案,从而实现了实时数据监视和反馈,从而增强了系统性能和可靠性。被认为是21世纪的一种变革性技术,MEMS是下一代设备开发不可或缺的一部分。根据Yole Development的市场和技术趋势,MEMS设备的全球市场预计将在2023年至2029年之间经历大幅增长,从136亿美元增加到200亿美元。1这强调了提高有效的MEMS Technolo-
微型的两光子成像设备可以在体内和亚细胞分辨率下进行实时成像,这对于临床应用和基础研究(例如神经科学)非常有价值。但是,在不同深度下实现高质量的体积成像仍然具有挑战性。在这项研究中,我们证明了2p纤维镜在直径350μm和400μm深度的圆柱体积上进行三维成像。深度扫描是通过将基于微电视的变种透镜(VL)纳入二维扫描2P Fiberscope来实现的,该扫描的焦点是通过调节VL驱动电压来调节的。首先使用幻像表征纤维镜的性能,然后通过对荧光染色的静电板和GFP小鼠脑切片以及体内动态GCAMP基于醒的小鼠中皮质神经元的基于体内动力学的钙成像来证明。
电子产品无处不在,它是信息、通信、控制、自动化、能源、电动汽车和航空电子时代所有当前和未来技术不可替代的基础。电子学研究不断进行并受到各种不同需求的推动。例如,越来越快、越来越低功耗的微处理器以及越来越密集、越来越无缺陷的存储器是任何计算系统的基本组成部分。如果没有这样的电子电路,智能机器就无法实现,而只能是科幻小说。超灵敏、微型的半导体传感器,在最先进的机器人系统和无处不在的广泛分布式网络中,能够相互通信并与外界通信,对于获取现实世界、理解现实世界、管理现实世界、控制现实世界和干预现实世界至关重要;如果没有这样的电子设备,机器就无法自主,与机器的交互也只能是虚拟的。
现有的电子集成导管依靠单独组件的手动组装来集成传感和驱动功能。这严重阻碍了它们的小型化和进一步集成。在这里,我们报告了一种电子集成的自组装微导管。用于传感和驱动的电子元件通过光刻处理的聚合物薄膜的自组装嵌入到导管壁中。该导管的直径仅为 0.1 毫米左右,集成了用于操纵的驱动手指和用于导航的磁传感器,能够有针对性地输送液体。基本功能通过人工模型环境和离体组织进行展示和评估。利用集成磁传感器,我们开发了一种医疗工具的磁跟踪策略,可实现低于 0.1 毫米的高分辨率的基本导航。这些高度灵活和微型的集成导管可能会扩展微创手术的界限并带来新的生物医学应用。
柏林技术大学的Nanoff(编队飞行中的Nanosatellites)项目由联邦经济事务和能源部的德国航空航天中心(DLR)带来了资金,是微型卫星技术的开拓者。主要任务目标是两颗卫星在螺旋轨道上的受控地层飞行,这是柏林TU的开创性壮举,因为这将是大学首次从大学中进行如此紧凑的卫星在轨道上进行地层飞行。实现这一目标,该项目的核心创新在于其高度微型的卫星总线平台Tubix-5,该平台将推进系统集成到紧凑型2U框架中,提供了前所未有的1.3U有效负载能力。该项目在技术上是高级先进的,具有诸如可部署的太阳能电池板,冗余GNS接收器,三个微型星形跟踪器和四个具有39m接地像素分辨率的光学摄像头,以及超过160 km的缝隙宽度,并标志着Tu Berlin的大量里程碑。所有这些成就都强调了使命的独特创新,商业可行性和学术卓越的融合。