摘要:混合基质膜(MMM)是通过使用七个具有广泛渗透率的聚合物矩阵形成的。所有聚合物矩阵都是聚酰亚胺,即:p84,pi-dapoh,pi-daroh,matrimid,pi-habac,pi-dam和pim-1,以增加O 2的渗透性顺序。由三氟乙烯酮和三倍苯烯的组合形成的微孔有机聚合物(TFAP-TRP)的固定(10%)浓度被作为多孔填充剂添加。测量了多种纯气体的材料特性及其分离性能,特别是HE,N 2,O 2,CH 4和CO 2的渗透率。已定量分析了MMM中渗透率的相对增加与基质聚合物膜的相关性之间的相关性。这项研究证明,MMM的渗透性增加与填充物高渗透率的贡献很大程度上联系在一起。添加TFAP-TRP多孔填充剂被证明对低至中等通透性的矩阵特别有益,从而显着增强了矩阵渗透率总体上。根据现有模型,拟合的关系大约是线性的,以预测分散阶段低比例的双相系统中的渗透性。推断允许评估纯微孔有机聚合物的渗透性,该聚合物与该组对不同填充物含量和其他聚合物矩阵所描述的先前值一致。在所有情况下,选择性在渗透率增加的同时保持差异均匀。在所有聚合物矩阵中添加TFAP-TRP导致MMM分离性能的适度改善,主要集中于其渗透率。关键字:气体分离,混合基质膜,渗透率,选择性,双相渗透性的建模,F-FACTOR
在锂离子电池中使用热绝缘屏障是为了减轻电动电池中不常见但危险的热失控事件引起的火灾风险。施加到电池盖上的防火涂料代表了一种减少热失控事件风险的方法。Tego®热产品线促进了量身定制的原材料,以制定可提供极好的火力阻力和热绝缘特性的可喷涂涂层。基于微孔二氧化硅的TEGO®热HPG颗粒和热稳定的Tego®ThermL300粘合剂的联合使用允许制定符合UL 94 V-0火灾安全标准的燃烧涂层。
核分离:核分离方案取决于样品类型。有关详细信息,请参见Nuclei隔离(第13页)。标记:在批量的原位标记过程中,将核暴露于包含标记酶的标记混合物中。该酶靶向可访问的基因组区域(开放染色质区域),切割DNA并同时将预加载的衔接序列连接到每个DNA片段的末端。有关取代详细信息,请参见标签(第13页)。单细胞捕获:在微孔中执行细胞裂解。基因组DNA序列是通过夹板 - 橄榄键键的TSO链捕获的。
Tristar 3和Tristar 5多模片读取器的高范围和低范围标准曲线如图2。所有曲线表现出极好的线性。对于Tristar 3的96孔微孔板中计算的检测极限为0.069 pg/µl dsDNA(13.8 pg/井),对于Tristar 5的Tristar 3和0.083 pg/µl dsDNA(16.6 pg/well)在384孔板中进行测量时,Tristar 3和0.110 pg/µl dsDNA(7.6 pg/well)计算出的检测限为0.272 pg/µl dsDNA(19.0 pg/well),对于Tristar 5。使用所使用的设置,可以在33秒内测量完整的96孔板。
摘要 本研究致力于将通过硬模板法制备的中孔-大孔 SiO 2 块体碳材料的纳米级孔隙空间与相应的纳米级多环芳烃微结构连接起来,使用两种不同的碳前体,即可石墨化沥青和不可石墨化树脂,这两种碳前体通常表现出明显不同的碳化特性。通过与典型的气体吸附物 (Ar) 相比,相对较大的有机分子 (对二甲苯) 的吸附行为研究了这些块体碳材料的微孔和中孔率。此外,为了详细了解纳米孔隙空间,应用了小角度中子散射 (SANS) 结合原位物理吸附,在中子散射过程中使用氘代对二甲苯 (DPX) 作为对比匹配剂。通过 SANS 和广角 X 射线散射 (WAXS) 的特殊评估方法,分析了碳前体对碳微结构尺寸和无序性方面的原子尺度结构顺序、纳米孔结构和模板过程的影响。WAXS 分析表明,与单块树脂相比,沥青基单块材料表现出更有序的微观结构,由更大的石墨烯堆叠和相似的石墨烯层尺寸组成。另一个主要发现是,在两种不同的碳前体沥青和树脂中发现的氩气和氘代对二甲苯之间的可及微孔/中孔率存在差异,而沥青和树脂通常可被视为具有代表性的碳前体。这些差异本质上表明,如果使用探测气体(例如 Ar 或 N 2)进行物理吸附来评估纳米级孔隙空间的可及性,则可能会提供误导性参数。
最近在光学和光子学方面取得了突破,导致了非重点设备和材料的显着进步。研究人员已经证明了实现光学隔离的各种方法,包括磁光隔离器,非逆地相位变速器和声学系统。研究表明,可以使用IIII-V-niobate放大器和激光器(De Beeck等,2021)以及氮化硅平台(Yan等,2020)来实现综合波导隔离器。这些设备可实现有效的光学通信和传感应用。此外,研究人员还探索了在硅光子系统中使用微量的,这可以导致紧凑和集成的光子溶液(Shu等,2022; Shen等,2020)。其他研究的重点是开发针对平面波导隔离器的非重粒子材料和设计(Srinivasan&Stadler,2018)。此外,研究人员还研究了在不使用磁光材料的情况下实现光学分离的各种方法。这些方法包括合成磁力和储层工程(Fang等,2017),电动驱动的Acousto-Optics(Kittlaus等,2021)以及声子介导的光子自动镇分布(Sohn等,2021)。总体而言,这些非重点设备和材料中的这些进展对用于光学通信,传感和其他应用的紧凑,集成光子系统的开发具有重要意义。最近的一项研究证明了用于基于芯片的激光雷达技术的非重点脉冲路由器的发展[1]。这项创新基于光学隔离器和循环器的先前研究,这些创新已被证明是通过参数放大[2]和KERR效应的固有非交流性[3]来实现的。其他研究探索了微孔子来创建隔离器和循环器[4],以及在对称微腔中的可重构对称性激光[5]。研究人员还研究了用于频率梳子产生和低功率启动的高Q氮微孔子[6,7]。已经报道了磷化磷化物非线性光子学的综合凝固膜的发展,以及基于触觉的Kerr非线性综合光子学[8,9]。还研究了高Q硅碳化物微孔子中的光学KERR非线性,以及硅碳化物纳米光子学中的光学参数振荡[10,11]。进一步的研究集中于具有高第二谐波产生效率的定期粘性薄膜硅锂微孔谐振器[12]。单片硅锂光子电路已为Kerr频率梳子的产生和调制开发[13]。研究还研究了由于动态互惠性而引起的非线性光学隔离器的局限性[14],以及非线性谐振器中反传播光的对称破坏[15]。已报道了非线性微孔子中自发性手性的实验证明,以及基于氮化硅和非线性光学硅Hydex的新型CMOS兼容平台[16,17]。研究还探索了稀薄的氮化硅同心微孔子中的分散工程和频率梳子的产生[18]。据报道,探测材料吸收和集成光子材料的光学非线性,以及解决硅微孔谐振器设备的热挑战[19,20]。最后,已经证明了镜子对称的片上频率循环,以及由硅芯片上带光子跃迁引起的电动驱动的非转换的非逆向性[21,22]。使用微孔调制器的光学隔离也已经探索[23]。注意:我在试图维护原始含义和上下文的同时解释了文本。但是,为了清楚起见,可能已经省略或改写了一些次要细节。研究人员刘和团队开发了一种大规模生产高质量氮化硅光子电路的方法,以最低的损失率以最低的损失率实现了出色的性能。在他们最近在《自然传播》中的出版物中详细介绍了这一突破。
- 金属前体和还原方案对无选择性增强剂直接合成过氧化氢的无氯催化剂制备的影响,ChemCatChem,2016,8,1564-1574。 - 柔性聚合物基质在固定化纳米粒子催化转化中的独特作用,RSC Advances,2015,5,56181-56188。 - 用于直接合成过氧化氢的钯催化剂的原位 X 射线吸收精细结构光谱:在溴离子存在下金属相的浸出和还原,ChemCatChem,2015,7,3712-3718。 - 新型高表面积聚合物的干燥和膨胀状态形态,微孔和中孔材料,2014,185,26–29。 - 用于将甘油氢解为丙二醇的树脂基催化剂,Top. Catal.,2013,56,822–830。
经常更换磨损的铁轨在轨道上带来了巨大的经济负担,这也引起了铁路运营的重大干扰。通过激光粉末沉积(LPD)恢复磨损的导轨可以大大降低相关的维护成本。这项研究的重点是使用LPD来修复标准美国铁路的破产。最小硬度为85 hrb的304L不锈钢沉积物的微观结构由奥氏体,d -frerite和Sigma组成。微孔分散在整个沉积物中,并在轨道沉积界面上发现了微裂纹。珠光体导轨底物的中度硬度为94 hrb。珠粒,珠光皮热影响区的最大硬度为96 hrb,对于典型的导轨仍低于97 hrb的最小硬度。要增加硬度或以上97 HRB并减轻微结构缺陷,AS修复的导轨进行了热处理过程。AS处理的导轨的平均硬度显着增加,即103 hrb。此外,将多孔和粗粒沉积材料转化为可渗透和细粒度的微观结构。然而,热处理加强了轨道沉积界面的微裂纹,并导致了马氏体形成并增加了父轨中的微孔。在热处理和预热期间,基本导轨的隔离为有问题结果的解决方案。最终发现LPD过程是修复导轨的有前途的技术。2021 Tongji大学和Tongji大学出版社。 Elsevier B.V.的发布服务 这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。2021 Tongji大学和Tongji大学出版社。Elsevier B.V.的发布服务这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
电极表面附近的离子种类。由于电能以离子电荷的形式积累,因此可以通过优化多孔电极的比表面积和匹配离子种类和电极孔的几何特征来放大 EDL 电容,从而放大能量和功率密度。3 相反,电化学伪电容来自电解质和电极之间的电荷转移或来自微孔中离子种类的插入。4 在这种情况下,电能通过法拉第反应和/或电吸附存储。虽然用于描述 EDL 电容的基于物理的模型已经取得了很大进展,但由于 EDL 中电子和离子电荷的强耦合,定量描述电化学伪电容仍然是一个理论挑战。5
近年来,人们广泛研究了陶瓷制造过程中某些废料的回收利用,以从经济上证明与陶瓷制造相关的高昂成本是合理的,并避免这些废物被填埋[1-5]。多孔陶瓷具有许多应用领域,包括催化剂载体、熔融金属过滤器、高温隔热材料、电化学反应器中的隔板、生物反应器和骨组织工程、轻质夹层结构、水净化微孔膜和废水处理。此外,多孔陶瓷预制件还用于制备陶瓷-聚合物和陶瓷-金属复合材料[6]。陶瓷在许多应用领域的性能优于聚合物和金属竞争对手,因为它们的密度相对较低,这意味着重量轻、耐腐蚀(包括热腐蚀液体和气体)、热稳定性、化学惰性和