数字化和数字化转型、大数据和人工智能以及量子计算和区块链技术是当今媒体上最热门和被引用最多的流行语。每个人都听说过它们,但只有少数人理解它们。打个比方,他们似乎乘坐着一列即将出发的高铁。没有人知道从哪里出发,又要去哪里,但每个人都想立即上车,以免错失机会。因此,数字技术一直是政治、工业和社会中激烈猜测和争论的主题,这些猜测和争论是由夸大的希望和恐惧驱动的。乐观主义者强调数字技术的巨大未来前景,并设想新的非常实用的应用的到来,这些应用创造的就业机会甚至比数字化摧毁的还要多。另一方面,悲观主义者散布对数字技术的恐惧,担心超越人类智慧的智能且往往暴力的机器人会造成大规模失业,从而使数百万个工作岗位消失。
摘要:尽管由于政府旨在减少可再生能源普及障碍的政策,欧盟住宅部门的可再生能源采用率已大幅增加,但由于行为障碍和其他障碍,家庭部署可再生能源的全部潜力仍未实现。家庭采用可再生能源技术的最重要因素之一是实施可再生能源的决策;因此,在分析家庭可再生能源接受度时应考虑行为经济学的见解。本文通过分析政策和措施,对家庭可再生能源使用进行了系统的文献综述,这些政策和措施可以通过克服主要障碍来增加家庭可再生能源的使用。利用欧盟统计局的数据,对欧盟家庭可再生能源消费的动态进行了分析,并在立陶宛进行了实证案例研究,以了解家庭接受可再生能源的主要原因。尽管近年来欧盟成员国可再生能源的使用量大幅增加,但研究发现,传统政策无法克服以下最常见的障碍:(1)前期成本高、回报期长;(2)缺乏信息和知识;(3)对环境问题的重视程度低;(4)抵制改变;人类习惯。案例研究表明,大多数立陶宛家庭都希望在家中使用可再生能源技术,但他们遇到了财务困难和基础设施缺乏的问题。政策建议是根据研究结果制定的。
更高形式的对称性是对物质拓扑阶段进行分类的宝贵工具。然而,由于存在拓扑缺陷,相互作用多体系统中出现的高色对称性通常不准确。在本文中,我们开发了一个系统的框架,用于建立具有近似更高形式对称性的有效理论。我们专注于连续的u(1)q形式对称性和研究各种自发和显式对称性破坏的阶段。我们发现了此类阶段之间的双重性,并突出了它们在描述动态高素质拓扑缺陷的存在中的作用。为了研究物质这些阶段的平衡性动力学,我们制定了各自的流体动力学理论,并研究了激发的光谱,表现出具有更高形式的电荷松弛和金石松弛效应。我们表明,由于涡流或缺陷的增殖,我们的框架能够描述各种相变。这包括近晶晶体中的熔融跃迁,从极化气体到磁流失动力学的血浆相变,旋转冰跃迁,超流体向中性液体转变以及超导体中的Meissner效应。
简介:疫苗犹豫被定义为“尽管有疫苗接种服务,但仍推迟接受或拒绝接种疫苗”。许多国家报告称,新冠疫苗接种率低,这对结束这一流行病的努力来说是一个巨大的挑战。目的:在本研究中,我们旨在找出喀布尔医学生对新冠疫苗的接受率和犹豫率及其原因。方法:这项横断面研究是在喀布尔随机选择的五所大学的医学生中进行的,共有 459 名医学生完成了问卷调查。结果:医学生对新冠疫苗的犹豫率为 42.3%,男性的犹豫率高于女性。拒绝接种疫苗的主要原因是担心疫苗的安全性和副作用(62.3%)。超过一半的参与者(51.5%)已经接种过疫苗。 60.2% 的参与者表示,接种疫苗的主要原因是预防 COVID-19 病毒。这项研究表明,社交媒体是有关疫苗犹豫信息的主要来源(64.3%)。结论:这项研究表明,医学生对 COVID-19 疫苗的犹豫程度很高。强烈建议向社区,尤其是医学生提供有关 COVID-19 疫苗安全性和有效性的准确信息。关键词:COVID-19、医学生、疫苗犹豫
预期使用Gen III Microplate™测试面板使用94种生化测试提供了标准化的微方法,以剖面并识别革兰氏阴性和革兰氏阴性细菌的广泛范围。生物学的微生物识别系统软件(例如Omnilog®数据收集)用于从Gen III微板岩中的表型模式中鉴定细菌。描述生物Gen III微镀酸盐分析了94个表型测试中的微生物:71个碳源利用分析(图1,列1-9)和23种化学敏感性测定(图1,列,10-12列)。测试面板提供了微生物的“表型指纹”,可用于在物种水平上识别它。所有必要的营养物质和生化物都被预填充并干燥成96孔的微板井。四唑氧化还原染料用于比色表示碳源的利用或对抑制性化学物质的抗性。进行测试非常简单,如图2所示。要鉴定的分离物在琼脂培养基上生长,然后在推荐的细胞密度下悬浮在特殊的“胶凝”接种液3(IF)中。然后将细胞悬浮液接种到Gen III微板酸盐中,每孔100 µL,然后将微孔板孵育以使表型指纹形成。接种时,所有井都无色。在孵育过程中,在细胞可以利用碳源和/或生长的井中呼吸增加。增加的呼吸导致四唑氧化还原染料的减少,形成紫色。图1。负井仍然无色,负面对照井(A-1)也没有碳源。也有一个阳性对照井(A-10)用作10-12列中化学敏感性测定的参考。孵化后,将紫色井的表型指纹与生物学广泛的物种文库进行了比较。如果发现匹配,则将进行分离物的物种水平识别。在微板元素III微板TM
目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
肠道菌群越来越被认为是肠粘膜中血管发育和内皮细胞功能的致动变量,但也影响远程器官的微脉管系统。在小肠中,用肠道菌群定殖以及随后的先天免疫途径的激活促进了复杂的毛细血管网络和乳乳的发展,从而影响了肠道的完整性 - 血管屏障的完整性以及营养摄取。由于肝脏通过门户循环产生大部分的血液供应,因此肝微循环稳步遇到微生物元素衍生的模式和主动信号代谢物,这些代谢产物会诱导肝弦正弦内皮的组织变化,从而影响正弦的免疫分化并影响代谢过程。,此外,微生物群衍生的信号可能会影响远处器官系统(例如大脑和眼睛微血管)的脉管系统。近年来,这个肠道居民的微生物生态系统被揭示出有助于几种血管疾病表型的发展。
