摘要:本研究提出了一种创新方法,该方法基于低成本红外热成像 (IRT) 仪器的使用,以实时评估脊柱侧弯支具的有效性。确定脊柱侧弯支具的有效性意味着决定支具对患者背部施加的压力是否足以达到预期的治疗目的。传统上,支具有效性的评估依赖于骨科医生在常规随访检查中进行的经验性定性评估。因此,它在很大程度上取决于相关骨科医生的专业知识。在现有技术中,用于确认骨科医生意见的唯一客观方法是基于对脊柱侧弯随时间进展情况的评估,这通常会使人们暴露在电离辐射下。为了解决这些局限性,本研究提出的方法旨在以无害的方式实时、客观地评估脊柱侧弯支具的有效性。这是通过利用热弹效应并将患者背部的温度变化与支架施加的机械压力相关联来实现的。基于此方法的系统已实施,并通过在一家经认可的骨科中心对 21 名患者进行的实验研究进行了验证。实验结果表明,在区分充足和不足压力方面,分类准确率略低于 70%,鉴于此类系统在骨科中心的临床应用,这是一个令人鼓舞的结果,有望进一步推进。
作为一种新的污染物,微塑料(MPS)以其对不同生态系统和生物体的负面影响而闻名。MPS因其小体积而被生态系统轻松地以各种或Ganism的形式吸收,并在受影响的生物体中引起免疫,神经和呼吸道疾病。此外,在受影响的环境中,MP可以释放有毒的作用,并充当特定微生物定植和运输的载体和支架,并导致微生物群和生物地球化学和营养素动态的失衡。为了解决控制MPS对微生物群和生态系统污染的担忧,MPS的微生物生物降解可能被视为有效的环境友好方法。提出的论文的目标是提供有关MPS对微生物群的毒理作用的信息,以讨论MPS微生物定植的负面影响,并以MPS的生物降解能力引入微生物。
脊柱侧弯是脊柱的异常曲率,可能导致许多问题,包括严重的慢性疼痛。虽然脊柱侧弯的确切原因尚未被清楚地鉴定出来,但在脊柱侧弯领域内将干细胞研究和治疗纳入的新数据倡导。脊柱侧弯往往不是致命的慢性疾病,因此在干细胞的研究中尚未将其优先考虑。基于缺乏数据,不能得出任何具体结论,但是发现新的相关性表明干细胞中的故障可能是脊柱侧弯的原因,并且有可能用于纠正脊柱侧弯。扩大了这一点,一项对一个小男孩的研究在植入间充质干细胞时的脊柱曲率有所改善。使用MSC进行脊柱融合时,另一种类型的脊柱侧弯也有所改善。本文旨在比较MSC对引起脊柱侧弯的影响,同时还编译了提出的研究干细胞的研究可以帮助疼痛管理甚至正确的曲率。当前的脊柱侧弯治疗可能会有严重的并发症,并且不能保证它可以纠正脊柱。通过进行了更多研究,分析了干细胞对脊柱侧弯的影响,我们可以希望开始找到创造更有效和道德治疗的原因。
预期使用Gen III Microplate™测试面板使用94种生化测试提供了标准化的微方法,以剖面并识别革兰氏阴性和革兰氏阴性细菌的广泛范围。生物学的微生物识别系统软件(例如Omnilog®数据收集)用于从Gen III微板岩中的表型模式中鉴定细菌。描述生物Gen III微镀酸盐分析了94个表型测试中的微生物:71个碳源利用分析(图1,列1-9)和23种化学敏感性测定(图1,列,10-12列)。测试面板提供了微生物的“表型指纹”,可用于在物种水平上识别它。所有必要的营养物质和生化物都被预填充并干燥成96孔的微板井。四唑氧化还原染料用于比色表示碳源的利用或对抑制性化学物质的抗性。进行测试非常简单,如图2所示。要鉴定的分离物在琼脂培养基上生长,然后在推荐的细胞密度下悬浮在特殊的“胶凝”接种液3(IF)中。然后将细胞悬浮液接种到Gen III微板酸盐中,每孔100 µL,然后将微孔板孵育以使表型指纹形成。接种时,所有井都无色。在孵育过程中,在细胞可以利用碳源和/或生长的井中呼吸增加。增加的呼吸导致四唑氧化还原染料的减少,形成紫色。图1。负井仍然无色,负面对照井(A-1)也没有碳源。也有一个阳性对照井(A-10)用作10-12列中化学敏感性测定的参考。孵化后,将紫色井的表型指纹与生物学广泛的物种文库进行了比较。如果发现匹配,则将进行分离物的物种水平识别。在微板元素III微板TM
目标 提供有关 MEMS 技术和制造的基本知识。 课程目标 本课程应使学生能够: 1. 了解微制造的演变。 2. 学习各种制造技术。 3. 了解微传感器和微执行器。 4. 学习各种微执行器的设计。 第一单元简介(9 小时) 基本定义 – 微制造的演变 – 微系统和微电子学,缩放定律:静电力、电磁力、结构刚度、流体力学和传热的缩放。 第二单元微传感器(9 小时) 简介 – 微传感器:生物医学传感器和生物传感器 – 化学传感器 – 光学传感器 – 压力传感器 – 热传感器、声波传感器。 第三单元微执行器(9 小时) 微驱动:使用热力、压电晶体、静电力进行驱动。基于 SMA 的微执行器,微执行器:微夹钳、微电机、微阀门、微泵、微加速度计 - 微流体。第四单元 MEMS 制造技术(9 小时)MEMS 材料:硅、硅化合物、压电晶体、聚合物微系统制造工艺:光刻、离子注入、扩散、氧化、CVD、溅射、蚀刻技术。第五单元微加工(9 小时)微加工:体微加工、表面微加工、LIGA 工艺。封装:微系统封装、基本封装技术、封装材料选择。
肠道菌群越来越被认为是肠粘膜中血管发育和内皮细胞功能的致动变量,但也影响远程器官的微脉管系统。在小肠中,用肠道菌群定殖以及随后的先天免疫途径的激活促进了复杂的毛细血管网络和乳乳的发展,从而影响了肠道的完整性 - 血管屏障的完整性以及营养摄取。由于肝脏通过门户循环产生大部分的血液供应,因此肝微循环稳步遇到微生物元素衍生的模式和主动信号代谢物,这些代谢产物会诱导肝弦正弦内皮的组织变化,从而影响正弦的免疫分化并影响代谢过程。,此外,微生物群衍生的信号可能会影响远处器官系统(例如大脑和眼睛微血管)的脉管系统。近年来,这个肠道居民的微生物生态系统被揭示出有助于几种血管疾病表型的发展。