有了教育机构的培训,培训的联系版本,有机会花费资金来购买设备和培训人员的时间,以确认其在教育服务市场中的相关性,在那里我们非常友好。以及该过程各方的利益:学生,老师和雇主,出口的听众应该准备好从培训到专业活动的平稳而舒适的过渡。考虑到隔离区之前存在的现实,教学人员的经验以及员工的技术设备使得可以从学生那里培训技术专家[2]。但是,结果的一个重要组成部分是听众的动机,它仍然有改进的余地。
在电子工程的工业和研究领域,距离信息被视为关键测量之一 [1]。为了获得准确可靠的距离数据,具有测距能力的设备现在广泛应用于军事和工业领域,包括红外 (IR) 和超声波测距仪。然而,使用这些传统的测距系统会出现许多准确性问题,因为它们对周围环境非常敏感,特别是当暴露于非结构化和不可预测的物理环境(灰尘、温度、烟雾)或结构混乱的环境(瓦砾、碎片等)时 [2]。因此,提出了一种更可靠的测距方法。激光二极管发射高度定向的光束,具有体积小、亮度高、颜色纯、能量密度高和效率高的优点 [3][4]。最重要的是,激光测距系统不易受到环境影响,因为可以通过测量反射和散射回波信号的时间间隔、频率变化和光束方向来获得目标的距离和方向。使用激光测距方法的测量误差仅为其他光学测距仪的五分之一到百分之一 [5]。相位激光测距法因其高精度而受到广泛欢迎,然而其应用问题也不容忽视,观测到在频率漂移、噪声、大气折射等影响下,可能由于相位折叠或相位模糊而出现接近零步进误差[6]。Barreto 等人采用了三角测量激光测距法,但其灵敏度要求严格且功耗高[7]。本文研制了一种微型、便携、低功耗的激光测距系统,具有两种测量模式:高精度模式和长距离模式。本文研制了一种微型便携式激光测距系统,具有两种测量模式:高精度模式和长距离模式。该系统基于 VL53L0X 飞行时间激光测距传感器和 STM32F407 微控制器 [8]。
还有许多其他选项。例如,可以启用 CSS。CSS 代表时钟安全系统。如果启用,则当外部时钟发生故障时会产生不可屏蔽的中断。否则,MCU 将切换到使用其 HSI 或高速内部时钟。在此示例中,不会启用此功能。令人困惑的部分是框将显示“启用 CSS”,但实际上并未启用。
尽管出版商和作者已尽最大努力确保本作品中包含的信息和说明准确无误,但出版商和作者对错误或遗漏不承担任何责任,包括但不限于因使用或依赖本作品而造成的损害的责任。使用本作品中包含的信息和说明的风险由您自行承担。如果本作品包含或描述的任何代码示例或其他技术受开源许可或他人的知识产权约束,您有责任确保您对其的使用符合此类许可和/或权利。
基于集成物联网设计和 Android 操作的军用多用途现场监视机器人 1 M.Ashokkumar,2 Dr.T.Thirumurugan 电子与通信工程系 基督理工学院 印度本地治里 ashok5june@gmail.com,thiru0809@gmail.com 摘要 — 该项目描述了多用途现场监视机器人的设计、构造和制造,该机器人可用于战场上的地雷探测、有毒气体感应以及温度和湿度传感器监测,而不会带来严重的人工风险。地雷探测器可以探测覆盖的金属,气体传感器可以探测有毒气体攻击,机器人可以通过 Android 手机无线控制。机器人使用 Arduino Uno 微控制器收集传感器信息,并使用 NodeMCU WiFi 连接控制器和机器人。根据来自 Android 应用程序的输入信息,机器人可以在任何地形上移动和攀爬。我们的项目与传统项目的区别在于,Android手机操作和多个物联网云服务器的集成设计。所有机器人传感器信息都传送到云服务器并通过网页查看。这样,机器人既可以用于军事战场,也可以同时在军事总部进行监控。这是一种将现场机器人和物联网技术以可扩展的设计模式进行集成的新颖尝试。设计的额外增强使其成为在布满地雷和其他危险金属物品的危险区域部署和使用的绝佳选择。关键词-机器人技术、嵌入式系统、物联网(IoT)、无线通信和云技术 I. 介绍 地雷是一种植入地球的爆炸装置,由压力、磁场和绊线等触发。它们是当代战斗中最常用的武器之一,最常用作先发制人的屏障和对手威慑。它们是微小的圆形装置,旨在通过爆炸或飞行碎片伤害或杀死人员。大多数地雷由塑料制成,所含金属量与圆珠笔中的弹簧相当。反坦克地雷的发展受到第一次世界大战期间战斗坦克使用的推动。 杀伤人员地雷的建立是为了取代这些可以被敌方士兵轻易移除的大型地雷。
Microchip 的 ATmegaS64M1 AVR ® 微控制器 (MCU) 将具有 CAN 功能的汽车领先 AVR 内核带入航空航天行业。ATmega S64M1 MCU 专为关键航空航天应用而设计,具有增强的辐射、扩展的温度和更高的可靠性。它利用了成熟的 Microchip 工具,这些工具已在全球大众市场的设计中使用。CAN 控制器、功率级控制器、ADC、DAC 和模拟比较器使 ATmegaS64M1 微控制器成为许多最常见的空间应用的绝佳选择,这些应用通常需要较小的占用空间和较低的功耗,例如电机控制和远程终端单元。
影响 R 1 、R 2 和 R clamp 值的另一个因素与电流消耗预算和输入信号噪声抑制有关。这里更详细地讨论了第二个因素。来自传感器的信号可能有噪声。噪声的时间常数小于采样时间 T 采样 ,对 ADC 来说是透明的,导致输出失真。在这种情况下,额外的专用旁路电容器与钳位电阻器和电阻分压器一起用作低通滤波器。较大的电容器会降低交流阻抗,并且更有效地分流噪声信号。通常,此低通滤波器的时间常数 (R clamp + R 1 || R 2 ) x C noise 应选择为远大于采样时间(根据经验法则,大 5 到 10 倍)。
AVR® ATmegaS128 微控制器 (MCU) 将业界领先的 AVR 内核带入航空航天业。ATmegaS128 MCU 专为增强空间应用的辐射性能和可靠性而设计。它利用了多年来在全球大众市场设计和使用的成熟 Atmel AVR 工具。ATmegaS128 微控制器面向许多最常见的空间应用,这些应用通常需要占用空间小、功耗低以及对电机和传感器进行模拟控制。
