本报告是作为由美国政府机构赞助的工作的帐户准备的。美国政府或任何雇员均未对任何信息,设备,产品或流程的准确性,完整性或有用性做出任何法律责任或责任,也不属于任何法律责任或责任,或者承担任何法律责任或责任感,或者表示其使用不会侵犯私有拥有权利。在本文中提及任何特定的商业产品,流程或服务,商标,制造商或以其他方式不一定构成或暗示其认可,推荐或受到美国政府或其任何机构的认可。本文所表达的作者的观点和观点不一定陈述或反映美国政府或任何代理机构的观点和意见。
[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计
摘要 混沌系统具有复杂且不可再现的动力学,在自然界中随处可见,从行星之间的相互作用到天气的演变,但也可以使用当前的先进信号处理技术进行定制。然而,由于底层物理涉及动力学,混沌信号发生器的实现仍然具有挑战性。在本文中,我们通过实验和数值方法提出了一种从微机械谐振器生成混沌信号的颠覆性方法。该技术通过调节施加到非线性区域中谐振器的驱动力的幅度或频率,克服了控制微/纳米机械结构中屈曲的长期复杂性。混沌状态的实验特征参数,即庞加莱截面和李雅普诺夫指数,可直接与不同配置的模拟进行比较。这些结果证实,这种动态方法可转换到任何类型的微/纳米机械谐振器,从加速度计到麦克风。我们通过将现成的微隔膜转变为符合美国国家标准与技术研究所规范的真正随机数生成器,展示了利用混沌状态的混合特性的直接应用。这种原始方法的多功能性开辟了新的途径,将混沌的独特性质与微结构的卓越灵敏度相结合,从而产生新兴的微系统。
信息处理的热力学能量成本是一个被广泛研究的课题,既有其基本方面,也有其潜在的应用[1-9]。该能量成本有一个下限,由 Landauer 原理确定[10]:在温度 T 下,从存储器中擦除一位信息至少需要 k BT ln 2 的功,其中 k B 为玻尔兹曼常数。这是很小的能量,在室温(300 K)下仅为 ∼ 3 × 10 − 21 J,但它是一个通用的下限,与所用存储器的具体类型无关,并且与广义 Jarzynski 等式 [11] 相关。已在多个经典实验中测量了兰道尔边界 (LB),这些实验使用了光镊 [ 12 , 13 ]、电路 [ 14 ]、反馈阱 [ 15 – 17 ] 和纳米磁体 [ 18 , 19 ],以及捕获超冷离子 [ 20 ] 和分子纳米磁体 [ 21 ] 的量子实验。在准静态擦除协议中可以渐近地达到 LB,其持续时间比上述用作一位存储器的系统的弛豫时间长得多。实际上,当在短时间内执行擦除时,可以使用最优协议最小化此类过程所需的能量,这些协议已经过计算 [ 22 – 27 ] 并用于过阻尼系统 [ 17 ]。更快接近渐近 LB 的另一个策略当然是减少弛豫时间。然而,对于非常快的协议,人们可能想知道机械(电子)系统中的惯性(感应)项是否会影响其可靠性和能量成本。
本文介绍了使用激光微机械侧孔光纤(S-H)的基于强度的折射率(RI)传感器。为了实现这一目标,将微腔切成S-H的侧面表面,从而可以进入其结构内的一个空气孔。然后将几何修饰的纤维在两端连接到单模纤维,以在包含超脑激光器和光学信号分析仪的系统中进行结构研究。在下一步中,将浸入液施加到微型腔内的RI值,范围为1.30至1.57,增量为0.02。功率损失测量。基于获得的结果,可以得出结论,RI传感器已成功地开发了生物化学中的潜在应用。
图 1:a) 印刷电路板 (PCB) 中带有 BGA 连接的表面贴装设备 (SMD) 的图示,b) 扫描电子显微镜 (SEM) 图像显示带有 SAC305 的 BGA 的细节以及使用焊膏安装到组件和 PCB 上的 PCSB 的图示,c) 直径为 750 µ m 的聚苯乙烯芯焊球 (PCSB),d) PCSB 结构的示意图。
1 G. Langfelder、M. Bestetti 和 M. Gadola,《微机械与微工程杂志》31 (8),084002 (2021)。2 Chen Wang、Fang Chen、Yuan Wang、Sina Sadeghpour、Chenxi Wang、Mathieu Baijot、Rui Esteves、Chun Zhao、Jian Bai、Huafeng Liu 和 Michael Kraft,《传感器》20 (14),4054 (2020)。3 V. Narasimhan、H. Li 和 M. Jianmin,《微机械与微工程杂志》25 (3),033001 (2015)。4 DK Shaeffer,《IEEE 通信杂志》51 (4),100 (2013)。5 LM Roylance 和 JB Angell,《IEEE 电子设备学报》26 (12),1911 (1979)。 6 AA Barlian、W. Park、JR Mallon、AJ Rastegar 和 BL Pruitt,IEEE 97 论文集 (3),513 (2009)。7 S. Tadigadapa 和 K. Mateti,测量科学与技术 20 (9),092001 (2009)。8 O. Le Traon、J. Guérard、M. Pernice、C. Chartier、P. Lavenus、A. Andrieux 和 R. Levy,在 2018 年 IEEE/ION 位置、定位和导航研讨会 (PLANS) 上发表,2018 年(未发表)。9 O. Lefort、I. Thomas 和 S. Jaud,在 2017 年 DGON 惯性传感器和系统 (ISS) 上发表,2017 年(未发表)。
采用这种主要方法时,将基板放置在反应器中,并暴露于含有要沉积材料的热不稳定气体中。在反应器的高温(高达 1250 o C)下,基板表面的化学反应将气体分解为气态和固态成分。固态成分以非常薄且均匀的薄膜形式沉积在基板表面上,气态成分则被吸走。
锡铅(SNPB)合金被广泛用于微电子包装行业。它充当连接器,可提供从一个电路元件到另一个电路元件的连接所需的导电路径。在这项研究中,使用纳米识别测试研究了γ辐照对锡铅(SNPB)焊料微机械行为的影响。带有钴60源的伽马辐射暴露于从5 Gy到500 Gy的不同剂量的SNPB焊料。在这项研究中,使用纳米识别技术来了解SNPB焊接接头的微机械性能(硬度和模量降低)的演变。结果表明,随着γ辐射的增加,SNPB合金的硬度得到了增强。硬度在500 Gy样品,25.6 MPa的剂量时最大,在未辐照样品时的值最低。然而,由于材料的内在特性和原子键,减少了模量减少。
摘要:超声波无线能量传输技术(UWPT)是植入式医疗设备(IMD)供电的关键技术。近年来,氮化铝(AlN)由于其生物相容性和与互补金属氧化物半导体(CMOS)技术的兼容性而备受关注。同时,钪掺杂氮化铝(Al 90.4%Sc 9.6%N)的集成是解决AlN材料在接收和传输能力方面的灵敏度限制的有效解决方案。本研究重点开发基于AlScN压电微机电换能器(PMUT)的微型化UWPT接收器装置。所提出的接收器具有2.8×2.8 mm 2的PMUT阵列,由13×13个方形元件组成。采用声学匹配凝胶,解决液体环境下声阻抗不匹配问题。在去离子水中的实验评估表明,电能传输效率(PTE)高达2.33%。后端信号处理电路包括倍压整流、储能、稳压转换部分,可有效将产生的交流信号转换为稳定的3.3V直流电压输出,成功点亮商用LED。这项研究扩展了无线充电应用的范围,为未来实现将所有系统组件集成到单个芯片中,进一步实现设备小型化铺平了道路。