修读“项目报告”的学生须修读以下七门选修学科单元/科目,以获得21 学分;修读“实习及报告”的学生须修读以下八门选修学科单元/科目,以获得24 学分︰ 集成电路研究方法和应用选修45 3 数字集成电路选修45 3 数据转换器集成电路设计选修45 3 柔性交流输电系统选修45 3 电源管理集成电路设计选修45 3 生物医学工程专题选修45 3
摘要。超声微泡与 microRNA (miRNAs/miRs) 结合在癌症治疗中表现出良好的效果。目的是研究 miR-378 在肝癌细胞中的作用及其与超声辐射和 SonoVue ® 微泡法结合用于细胞转染的效率。仅使用 Lipofectamine ® 3000 或结合 SonoVue 微泡和 0.5 W/cm 2 超声辐射 30 秒将 miR-378 模拟物转染到 HuH-7、Hep3B 和 SK-Hep1 细胞中。分别通过逆转录定量 PCR 和蛋白质印迹法检测 Cyclin D1、Bcl-2、Bax、Akt、p53 和 Survivin 的 mRNA 和蛋白质水平。采用Cell Counting Kit-8、细胞双重细胞化学染色和流式细胞术分别检测细胞存活率、增殖、细胞周期和凋亡。研究发现,使用超声辐照和SonoVue微泡方法相结合可以增加miR-378转染肝细胞癌(HCC)细胞的有效性,并增加对细胞存活和增殖的抑制。此外,通过应用联合方法,miR-378在HCC细胞系中更有效地增加了细胞凋亡率,上调了Bax和p53的表达,抑制了细胞周期,下调了Cyclin D1、Bcl-2、Akt、β-catenin和Survivin的表达。因此,miR-378被证明是降低HCC细胞增殖和增加细胞凋亡的抑制因子。此外,超声辐照和SonoVue微泡方法相结合在miRNA的转染方面更有效。
照射后C-Au-PFH-NPs组荧光信号分布与照射前相比均有明显改善。除肝脏和脾脏外,两组主要脏器荧光信号分布均无明显改变(图5B和C)。非靶向组肿瘤部位荧光信号较低可能是由于EPR效应,促使肿瘤组织中发生惰性结合。相比之下,靶向组荧光信号的改善主要归因于C225介导的内吞机制。此外,C-Au-PFH-NPs可以突破肿瘤的生物屏障。微泡振荡、空化和破坏后,C-Au-PFH-NPs在目标部位的聚集得到证实。在超声靶向去除微泡的影响下,声微泡振荡和破碎过程中,细胞膜会被打断,其通透性会降低。
在胰腺癌的治疗研究中,超声靶向的微泡破坏(UTMD)在促进凋亡作为一种安全和非侵入性辅助治疗方面可能显示出潜力。自噬是一种细胞应激反应和存活的调节机制,在肿瘤发育,进展和治疗中起双重作用。然而,自噬在UTMD诱导的胰腺癌细胞凋亡中的作用尚不清楚。在这项研究中,将自噬抑制剂氯喹(CQ)与UTMD结合使用,以治疗体外和体内胰腺癌,并通过Western blot和Tunel染色评估了凋亡的变化。结果表明,UTMD在胰腺癌细胞中诱导了凋亡和自噬。值得注意的是,抑制自噬显着增强了UTMD诱导的凋亡,而抑制凋亡并不影响UTMD诱导的自噬。这些发现表明自噬可降低UTMD在治疗胰腺癌中的有效性。这项研究提供了有关治疗胰腺癌的UTMD的新观点,这表明将自噬抑制剂结合起来可能是提高胰腺癌治疗有效性的有前途的策略。
Xin Luo 1,2,*、Kathleen M. McAndrews 1,*、Kent A. Arian 1、Sami J. Morse 1、Viktoria Boeker 1、Shreyasee V. Kumbhar 1、Yingying Hu 1、Krishnan K. Mahadevan 1、Kaira A. Church 1、Sriram Chitta 3、Nicolas T. Ryujin 1、Janine Hensel 1、Jianli Dai 1、Dara P. Dowlatshahi 1、Hikaru Sugimoto 1、
科学并非毫无价值。彼得·克鲁泡特金是一位著名的博物学家,也是 20 世纪读者最多的无政府主义者。本文旨在分析他的主要著作《互助:进化的一个因素》(1902 年)中提出的进化思想。我概述了克鲁泡特金进化论的核心论点,将它们置于其背景中,并根据现有知识进行研究。克鲁泡特金认为:(1)物种不是固定的,即它们会随着时间而变化;(2)这种变化并不遵循神圣的计划;(3)物种有共同的祖先;(4)环境产生并选择生物体中的有利特征;(5)当生物体联合而不是竞争时,“生存斗争”更有利;(6)联合(互助)的优势使其在进化中发挥了进步作用,为伦理和无政府共产主义提供了基础。克鲁泡特金理论的合作性和进步性为解决价值观在科学中的作用提供了一个极好的模型。
摘要:缺血性中风是全球残疾和死亡率的重要贡献者,在当前临床环境中缺乏有效的治疗方法。神经干细胞(NSC)是一种仅在神经系统内部发现的干细胞。这些细胞可以分化为各种细胞,可能在大脑被破坏的区域内再生或恢复神经网络。本综述首先提供了缺血性中风的现有治疗方法的介绍,然后检查与使用NSC治疗缺血性中风相关的承诺和限制。随后,进行了全面的概述,以综合有关在缺血性中风的背景下神经干细胞衍生的小细胞外囊泡(NSC-SEVS)移植疗法的现有文献。这些机制包括神经保护,炎症反应抑制以及内源性神经和血管再生的促进。尽管如此,NSC-SEV的临床翻译受到挑战,例如靶向功效不足和内容负载不足。鉴于这些局限性,我们已经根据当前的细胞外囊泡修饰方法来概述了利用改良的NSC-SEVS来治疗缺血性中风的进步概述。总而言之,研究基于NSC-SEVS的治疗方法预计在有关缺血性中风的基本和应用研究中都是突出的。关键词:神经干细胞,小囊泡,缺血性中风,神经保护,神经再生
该大师项目的目的是创建一个适用于包括医学在内的图像的任意域的复杂的深击检测器。该检测器将使用在有限的深层示例中训练的神经网络开发。主要目标是设计和实施一种学习算法,该算法不仅在时间上有效,而且需要最少或不需要人类干预。该项目的一部分是创建一个新的基准,构成真实和生成的医学图像。将使用已建立的基准和项目中创建的医学图像的新基准进行比较开发的DeepFake检测器。指南:1。熟悉有关DeepFake检测的已发表工作;考虑CVPR和ICCV等突出的会议。2。审查并总结了深层检测最新方法下的核心原则。3。设计并实施了深泡检测器的一些弹药学习算法。4。创建生成和真实医学图像的基准,用于测试深冰探测器。5。验证学习算法的功能并比较其性能指标,包括检测准确性,时间效率和学习过程中所需的人类监督水平,与既定的最新方法。
汇集了来自学术界,行业和政策的专家,该研讨会将讨论如何彻底改变水效率,优化营养成分并改善农业系统的土壤健康。此外,还将探索水和土壤中污染物降解以及碳捕获的创新策略。参与者将对纳米泡,实际应用背后的科学以及显着影响农业生产力和环境可持续性的潜力有全面的了解。除了研讨会外,我们还计划进行一次实地考察,供参与者参观新泽西州的当地室内农场,在那里他们可以了解现代农业技术,包括创新的灌溉系统。这次实地考察定于2025年1月23日或1月25日举行,确切的日期将很快确认。
源自干细胞的细胞外囊泡(EV)正在成为干细胞疗法的另一种方法。成功的电动汽车的冻干可以长期在室温下在室温下方便地存储和分布,从而大大提高了电动汽车治疗剂对患者的可及性。在这项研究中,我们旨在确定适当的冻约剂组成,用于冻干和重建词干细胞衍生的电动汽车。MSC衍生的EV使用不同的浓度以不同的浓度,使用不同的抒情蛋白(例如二甲基磺氧化物,甘露醇,海藻糖和蔗糖)冻干。我们的结果表明,在高浓度下,海藻糖和蔗糖的混合物可以通过富集溶液的无定形相,支持无定形冰的形成,这成功抑制了在石ply粒化过程中缓冲液成分结晶的加速度。冻干和重构的电动汽车对浓度和大小,形态以及蛋白质和RNA含量进行了彻底评估。使用带有人脐静脉内皮细胞的试管形成测定法检查了重构电动汽车的治疗作用。在冻干电动汽车的补液补液后,它们的大多数通用特征都得到了很好的维护,并且其治疗能力恢复到类似于新鲜收集的电动汽车的水平。冻干电动汽车的浓度和形态与新鲜EV组的初始特征直到第30天在室温下的初始特征相似,尽管它们的治疗能力在7天后似乎有所降低。我们的研究提出了适当的乳液保护剂组成,尤其是用于EV冻干,这可以鼓励使用干细胞衍生的EV疗法在健康行业中的应用。