页面,葡萄牙量化,里斯本,葡萄牙。 UPV/Ehu,毕尔巴鄂。邮政信箱13500,芬兰9。页面64。 13 Gerching4,80799 MUNICS,德国Germachan GmbH 86,8035 16 Tti Normander,Santander,Santander,Santander,Santander,Santander,Santander,Santander,Santander,Santander,17 Ecole。毕尔巴O,巴斯克19伊克巴斯克,巴斯克。4,80799 MUNICS,德国Germachan GmbH 86,8035 16 Tti Normander,Santander,Santander,Santander,Santander,Santander,Santander,Santander,Santander,Santander,17 Ecole。毕尔巴O,巴斯克19伊克巴斯克,巴斯克。
摘要:2D材料在许多领域都显示出令人兴奋的特性,但是应用程序的开发受到低收益,高处理时间和当前去角质方法质量受损的障碍。在这项工作中,我们使用了MOS 2的出色MW吸收特性来诱导快速加热,从而产生吸附的,低沸点溶剂的近乎稳定性蒸发。突然的蒸发产生了内部压力,可以以高效率分离MOS 2层,并且通过分散溶剂的作用将其保持分离。我们的快速方法(90 s)给出了高度的高产(47%,在0.2 mg/ml时为47%,在1 mg/ml时为35%)高度脱落的材料(4层以下90%),大面积(高达几μm2)和优质的质量(未检测到显着的MOO 3)。关键字:钼二硫化物,过渡金属二盐元素(TMDC),微波驱动的去角质,大面积超薄片,高横向尺寸,高产量t
反应堆系统不仅旨在加热产品,还为分析微波效应。典型的单座腔意味着平行电场分布,在圆柱瓶中符合样品。该配置即使对于具有低吸收特性的材料,微波和样品之间的最大相互作用也提供了最大的相互作用。对于高吸收的样品,我们已经开发了垂直的电场分布。该溶液可以解决微波在高吸收材料体积中的低渗透问题,从而促进了有效且均匀的加热。平行和垂直电场分布之间的开关扩展了适用于可控和容积微波加热的化合物列表,与大多数产品匹配。m icro c hem s反应堆 - 25 m l倾斜腔
简单总结:尽管早期研究对胶质母细胞瘤的疗效令人鼓舞,但目前热疗尚未应用于脑癌的治疗。由于关键器官的存在及其对高温的额外敏感性,聚焦颅内加热是一项具有挑战性的任务。在本文中,我们引入了一个新概念来设计 UWB 施加器,以便在大型脑肿瘤中实现足够的温度,同时保护健康组织免于过热。我们引入了一种快速电场近似方案,可以快速探索大量阵列配置,以确定头部周围最优化的天线布置,以满足临床热疗的多个目标和要求。所提出的解决方案设法实现了成功治疗所必需的肿瘤覆盖和热点抑制水平。结果表明,该方法足够准确,可以为给定的肿瘤形状和位置提供有关最合适天线布置的定性指示,同时产生比环形天线阵列更高的目标温度。
光学频率梳是精密计量实验必不可少的工具,其应用范围从痕量气体的远程光谱传感到光学原子钟的表征和比较,以实现精密计时,以及探索标准模型以外的物理现象。本文介绍了基于自由空间激光器和 Er/Yb 共掺杂玻璃增益介质的电信波段自锁模频率梳的架构和完整特性。该激光器为基于 Er:光纤激光器的频率梳提供了一种强大且经济高效的替代方案,同时提供与 Ti:蓝宝石激光系统类似的稳定性和噪声性能。最后,使用两个超稳定的 1157 nm 和 1070 nm 光学参考进行高稳定性频率合成,并通过将这些参考划分到微波域来产生低噪声光子微波,证明了 Er/Yb:玻璃频率梳的实用性。
量子计算有可能比传统计算更快、更有效地解决复杂问题。传统计算能力随着每个集成设备的比特/组件数量的增加而线性增加。量子计算能力随着量子比特数量的增加而呈指数增长 [1]。量子比特是一种双态量子力学谐振器装置,具有量子力学的特性(利用原子和亚原子物质的性质)[5]。在传统计算中,单个比特必须处于 1 或 0 两种状态之一。在量子计算中,量子比特表现出波状、多维特性,必须同时处于两种状态的相干“叠加”(测量 0 的概率等于测量 1 的概率)。相干叠加类似于单一频率的点噪声特性(包含在可能范围内的各种振幅,换句话说,X 概率测量 Y 值)[1] [3]。
在过去的几十年中,人们一直在积极讨论“非热”微波辅助微生物灭活机制。这项工作介绍了一种新颖的非侵入式声学测量方法,测量家用微波炉腔体磁控管的工作频率为 fo = 2.45 ± 0.05 GHz(λ o ~ 12.2 cm),并在时间域(0 至 2 分钟)内进行调制。测量结果揭示了腔体磁控管阴极灯丝冷启动预热周期和脉冲宽度调制周期(开启时间、关闭时间和基准周期,其中开启时间减去基准时间 = 占空比)。波形信息用于重建历史微波“非热”均质微生物灭活实验:其中自来水用于模拟微生物悬浮液;冰、碎冰和冰浆混合物用作冷却介质。实验使用文字、图表和照片进行描述。确定了影响悬浮液时间相关温度曲线的四个关键实验参数。首先,当所选工艺时间 > 时间基准时,应为每一秒的微波照射使用腔体磁控管连续波额定功率。其次,由于外部碎冰和冰浆浴的热吸收率不同,它们会产生不同的冷却曲线。此外,外部浴可能会屏蔽悬浮液,从而延缓时间相关的加热曲线。第三,由于周围没有冰块,内部冷却系统要求悬浮液直接暴露在微波照射下。第四,四个独立的水假负载隔离并控制悬浮液的热传递(传导),从而将一部分微波功率从悬浮液中转移出去。使用能量相空间投影将 800 W 时 0.03 至 0.1 kJ ⋅ m −1 的“非热”能量密度与报道的 1050 ± 50 W 时 0.5 至 5 kJ ⋅ m −1 的热微波辅助微生物灭活能量密度进行比较。
大规模使用电动汽车产生了大量丢弃的锂离子电池,其中包含许多可回收的有价值的金属以及有毒和有害物质。可生物降解和可回收的深层溶剂(DES)被认为是用于用户的绿色回收技术。在此,我们提出了一种微波增强的方法,以缩短尿素/乳酸中的浸出时间:氯化胆碱:乙二醇DES系统。在高电场下,尿素或乳酸在LiCoo 2表面上诱导的偶极矩增加了两个数量级。因此,在尿素/乳酸中,可以在4分钟和160 W中快速浸出90%以上的LI和CO:氯化胆碱:乙二醇DES System。同时,我们建立了两个模型来解释金属离子的浸出动力学和微观行为的浸出机制,并分别将其命名为dot-etching and toelay-peeling过程。通过进一步分析,我们发现点蚀刻可以归因于还原和协调的协同作用,这导致了浸出残基多孔的表面。层 - - 磨牙过程取决于中和,并且浸出残基在此过程中具有光滑的表面。这项工作突出了微波增强策略和DES表面化学对耗尽电极材料恢复的影响。
关联粒子系统出现在现代科学的许多领域,代表了自然界中最难解决的计算问题之一。当相互作用变得与其他能量尺度相当时,这些系统中的计算挑战就会出现,这使得每个粒子的状态都依赖于所有其他粒子 1 。三体问题缺乏通解,强关联电子缺乏可接受的理论,这表明当粒子数或相互作用强度增加时,我们对关联系统的理解就会逐渐减弱。相互作用系统的标志之一是多粒子束缚态的形成 2–9 。在这里,我们开发了一个高保真可参数化的 fSim 门,并在一个由 24 个超导量子比特组成的环中实现自旋-½ XXZ 模型的周期量子电路。我们研究这些激发的传播,并观察它们对多达 5 个光子的束缚性质。我们设计了一种相敏方法来构建束缚态的少体谱,并通过引入合成通量来提取它们的伪电荷。通过在环和附加量子位之间引入相互作用,我们观察到束缚态对可积性破坏的意外恢复力。这一发现与不可积系统中的束缚态在其能量与连续谱重叠时不稳定的想法相悖。我们的工作为相互作用光子的束缚态提供了实验证据,并发现了它们在可积性极限之外的稳定性。
摘要:将量子信息确定性地加载到量子节点上是迈向量子网络的重要一步。本文,我们证明具有最佳时间波形的相干态微波光子可以有效地加载到半无限一维 (1D) 传输线波导中的单个超导人造原子上。使用具有指数上升波形的弱相干态(脉冲中包含的光子数 (N) ≪ 1),其时间常数与人造原子的退相干时间相匹配,我们证明从 1D 半自由空间到人造原子的加载效率为 94.2% ± 0.7%。高加载效率归因于时间反转对称性:入射波和时间反转的发射波之间的重叠高达 97.1% ± 0.4%。我们的研究结果为实现基于波导量子电动力学的量子网络开辟了有希望的应用。关键词:量子网络,光子加载,波导量子电动力学,超导人工原子Q