稿件收到日期为 2022 年 2 月 13 日;接受日期为 2022 年 3 月 14 日。出版日期为 2022 年 4 月 12 日;当前版本日期为 2022 年 6 月 7 日。这项工作部分由 TEAM-TECH 项目资助,该项目名为“微电子材料毫米和亚太赫兹波段高精度表征技术”,由波兰科学基金会 TEAM TECH 计划运营,由欧洲区域发展基金、2014-2020 年智能增长运营计划共同资助,部分由 TEMMT 资助,该项目获得了参与国共同资助的 EMPIR 计划和欧盟地平线 2020 研究与创新计划 18SIB09 项下的资金。 (通讯作者:Bartlomej Salski。)Jerzy Krupka 就职于华沙理工大学微电子与光电子研究所,邮编:00-661 Warsaw, Polish。 Bartlomiej Salski、Tomasz Karpisz 和 Pawel Kopyt 就职于华沙理工大学无线电电子学和多媒体技术研究所,邮编:00-661 Warsaw,Poland(电子邮件:bsalski@ire.pw.edu.pl)。 Leif Jensen 就职于 Topsil Semiconductor Materials A/S(地址:3600 Frederikssund,丹麦)。 Marcin Wojciechowski 就职于中央措施办公室,地址:00-139 华沙,波兰。本文于 2022 年 6 月 19 日至 24 日在美国科罗拉多州丹佛市举行的 IEEE MTT-S 国际微波研讨会 (IMS 2022) 上发表。本信中一个或多个图片的彩色版本可在 https://doi.org/10.1109/LMWC.2022.3161393 上找到。数字对象标识符 10.1109/LMWC.2022.3161393
摘要:在Covid-19-19大流行爆发之后,科学界通过开发有效的疫苗做出了迅速反应。仍然,即使针对Covid-19的有效疫苗可用,许多人似乎并没有急于被免疫接种。如果更多的人决定接种疫苗,则可以增强社区保护,因此有必要确定涉及疫苗接种行为的相关因素,从而更好地鼓励它。疫苗接种行为是可能根据信息处理中个体差异而变化的决策过程的结果。我们调查了认知反射能力和思维方式在预测对Covid-19的自我报告的疫苗接种行为中的作用。对本研究进行了调查的274名罗马尼亚参与者的样本,其中217(M AG E = 24.58,SD = 8.31; 53%女性)宣布他们有可能接种疫苗。结果表明,更高水平的认知反射能力显着增加了接种疫苗的几率。理性的思维方式与疫苗接种行为无关。但是,一种体验式思维方式间接地通过对疫苗接种的态度来预测疫苗接种行为。由于信息处理中的个体差异在一定程度上与疫苗接种行为有关,因此疫苗接种运动的设计可以认为人们有特定的信息需求并因此解决。
Dyconex总部位于瑞士,从事PCB业务已有50多年的历史,并在Flex,僵化和刚性技术中提供了领先的互连解决方案。dyconex核心竞争力在于生产高度复杂的HDI,用于医疗,防御,航空航天,工业和半导体应用的高频和高可靠性电路板。dyconex是一家公司。
在分散的能量电推进(深)项目中,开发了微波加热的等离子体推进器。推进器与电池和超级电容器结合间歇性地操作。这允许使用电池和太阳能电池板系统,旨在在卫星本身上具有较低功率,并减少整体质量,从而增加可用的有效载荷质量和功率。由于间歇性操作,推进器需要快速和可靠,而每个射击只能持续τ= 10-600 s,具体取决于占空比和必要的速度增量∆ V。推进器本身由与等离子体加速的磁喷嘴组合中的电子环体共振(ECR)放电组成。因此,加速血浆是准中性的,无需中和。侵蚀被最小化。除推进器外,流量管理系统(FMS)和电源控制和分销单元(PCDU)是从商业现成的组件开发的。
提供的信息被认为是准确和可靠的。但是,SGS-Thomson微电子学对使用此类信息的后果或对可能因其使用而造成的第三方的其他权利或其他权利的任何侵犯或其他权利都没有承担任何责任。在SGS-Thomson微电子学的任何专利或专利权下,没有任何许可证授予许可。本出版物中提到的规格如有更改,恕不另行通知。该出版物取代并替换了先前提供的所有信息。SGS-Thomson微电子产品未被授权用作生命支持设备或系统中的关键组件,而无需明确的SGS-Thomson Microelectonics的书面认可。
本版新增内容 5 低噪声放大器 5 低相位噪声放大器 5 宽带分布式放大器 5 线性放大器和功率放大器 5 GaN 功率放大器 5 数字步进衰减器 5 I/Q 下变频器/接收器 5 I/Q 上变频器/下变频器/收发器 6 集成 LO 的 I/Q 解调器 6 V 波段发射器/接收器 6 集成 VCO 的整数 N PLL 6 模拟可调低通/带通滤波器 6 数字可调滤波器 6 SPDT 开关 7 SP3T、SP4T、SP6T、SP8T 开关 7 波束形成器 7 高速模数转换器 >20 MSPS 7 高速数模转换器 ≥30 MSPS 7 时钟发生器和同步器 7 5G 毫米波网络无线解决方案和 Massive MIMO 解决方案 7 业界最完整的 24 GHz 至 29.5 GHz MMW 5G 网络无线解决方案 8 业界最完整的 37 GHz 至 43.5 GHz MMW 5G 网络无线解决方案 9 Massive MIMO(M-MIMO):5G 速度竞赛的快速通道 10
更新了 ARA 的定义 36.5 GHz 信道 ARA 放宽至 0.75K,以与总不确定度计算 (MRD-240) 保持一致。MRD 中提供的总体不确定度计算定义 1-sigma 限制适用于稳定性要求 MRD-250、MRD-260、MRD-270 增加了关于极端海风中 L 波段测量操作使用的部分。更新了微波成像任务以包括 COWVR 任务。表 MRD-2 更新了 36.5 GHz 信道的新 ARA 值 0.75 K。完全修订了空间采样要求。MRD-190 和 MRD-200 进行了澄清和相应修改。添加了沿扫描和跨扫描定义 澄清了到海岸的距离定义 添加了瞬时视场 (IFOV) 定义 添加了仰角定义 添加了方位角定义 澄清了足迹和足迹椭圆的定义 添加了全波束定义 添加了旁瓣定义 澄清了宽波束效率定义
我们提出了一个坚固的,基于光纤的内窥镜,其射频发射的银色直线射击结构(RF)发射旁边是光纤面的发射。因此,我们能够激发和探测样品,例如钻石中的氮呈(NV)中心,带有RF和光学信号,并通过纤维完全测量样品的荧光。在我们的目标频率范围约为2.9 GHz的范围内,纤维芯的小平面位于RF引导银结构的近场中,这具有最佳RF强度随距离迅速降低的优势。通过在光纤的覆层上创建银结构,我们在光学激发和检测到的样品与天线结构之间达到了最小的距离,而不会影响光纤的光学性能。这使我们在考虑具有集成光学和RF访问的内窥镜解决方案时可以在样品的位置实现高RF振幅。通过光学检测到的磁共振(ODMR)测量对NV掺杂的微足面的测量进行量化,我们将其探测为实际用例。我们演示了17.8 nt /√< / div>的设备的磁灵敏度
3在光学合成频率晶格中的可编程大规模仿真16 3.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。16 3.2结果。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 3.2.1带结构的测量。。。。。。。。。。。。。。。。。。22 3.2.2准备任意输入状态。。。。。。。。。。。。。。。。。。。23 3.2.3模拟具有超过100K晶格位点的晶格。。。。。。。25 3.3讨论。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。28 3.4实验设置。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。30 3.4.1设置表征。。。。。。。。。。。。。。。。。。。。。。。。32 3.4.2实际空间占用测量。。。。。。。。。。。。。。。36 3.4.3带结构测量。。。。。。。。。。。。。。。。。。。39 3.4.4输入状态准备。。。。。。。。。。。。。。。。。。。。。。。44 3.5补充结果。。。。。。。。。。。。。。。。。。。。。。。。。。。。47