摘要 Polygonum cognatum Meissn. 是一种野生可食用植物,在土耳其被称为 madimak。其嫩芽在春季栽培并用作蔬菜。本研究评估了不同干燥处理对 madimak 植物颜色属性的影响,这些植物使用两种不同的方法干燥:热风干燥和微波干燥。风干处理分别在 60、70 和 80 °C 下进行。微波干燥使用四种不同的微波功率水平进行,范围在 160 至 750 W 之间。madimak 的微波干燥比热风干燥更快。随着微波功率的提高,干燥时间大大减少。干燥过程在 0.058 到 0.308 小时之间完成,具体取决于微波功率水平,而热风干燥在 2.583 到 4.166 小时之间。微波干燥对样品颜色质量的影响不如热风干燥大。微波干燥植物的叶绿素 a、叶绿素 b 和总叶绿素含量显著保留。颜色和叶绿素属性均表明,与热风或常温干燥相比,微波干燥更适合马迪马克植物。研究发现,在 750 W 微波功率下,颜色变化最小,叶绿素含量最高。此外,80 °C 热风干燥和 160 W 微波功率水平的最低比能量需求分别为 44.58 kWh/kg 和 107.00 kWh/kg。结果表明,热风干燥温度之间的比能量需求没有显著差异,而微波功率水平之间的差异很大。关键词:Madimak、微波、热风、颜色、比能、可食用植物、叶绿素引言叶绿素是分布最广的植物色素,叶绿素 a 和 b 在食品技术中的重要性源于它们在绿色蔬菜中的作用(King 等人,2001)。叶绿素 a 和叶绿素 b 是主要形式,通常存在于常用于食用的高等植物中,它们的比例大约为 3:1。叶绿素 a 和 b 都是四吡咯酞菁氧合物的含镁衍生物。叶绿素 a 和叶绿素 b 在感知颜色和热稳定性方面也不同。叶绿素 a 呈蓝绿色,叶绿素 b 呈黄绿色(Cui 等人,2004)。它们极易在加工和储存过程中降解。叶绿素转化为脱镁叶绿素和其他衍生物会导致从鲜绿色变为暗橄榄绿色或橄榄黄色,最终被消费者视为品质的下降 King 等人(2001 年)和 Ahmed 等人(2001 年)。叶绿素保留对于确定热脱水绿色植物的最终质量非常重要。在较高温度和酸性条件下,叶绿素环中的中心镁被两个氢离子取代,绿色叶绿素转化为橄榄棕色脱镁叶绿素。在约 60–80 o C 的较低温度下,叶绿素酶活性增加,形成绿色叶绿素,然后叶绿素易受镁损失的影响,从而形成橄榄褐色脱镁叶绿素 (Cui 等,2004)。颜色是植物产品的重要质量属性,叶绿素已被用作绿色蔬菜的质量指标 (Guan 等,2005)。Polygonum cognatum Meissn. 是一种野生植物,在土耳其语中称为“madimak”。这种可食用植物是一种多年生细长木本植物。它生长在海拔 720-3000 米的路边、斜坡和悬崖上。春季收集带叶的嫩芽 (Yildirim 等,2003)。植物的新鲜叶子和茎可作为蔬菜食用。干燥的植物可用作药用植物 (Ozbucak 等,2007)。在土耳其民间医学中,它被用于各种目的,例如其利尿作用和治疗糖尿病(Yildirim 等人,2003 年)。脱水是最古老的食品保存方法之一,是食品加工中非常重要的一个方面。产品在干燥过程中产生的热损伤与温度成正比
染料敏化太阳能电池(DSSC)一直是材料与能源领域的研究热点,这主要归功于其制备工艺简单、成本低廉、颜色多样、灵活性强等特点(Bajpai et al.,2011)。典型的DSSC由光阳极、电解液和对电极三部分组成。光阳极接收光子并发射电子到外电路(Hong et al.,2008),电子经过负载后通过对电极被送到电解液中,还原电解液中的I3−(Zhu et al.,2017)。Pt作为贵金属,凭借优异的导电性和催化性能,是目前传统对电极的主流选择(Ghosh et al.,2020),但Pt资源稀缺且价格昂贵,不利于DSSC的大规模生产(Hauch and Georg,2001)。此外,碘基电解液和空气对Pt也有腐蚀作用,缩短电池寿命(Olsen等,2000)。因此,寻找廉价、耐腐蚀的对电极替代材料十分必要(Sun等,2014)。石墨烯作为二维碳材料,因其电导率、多孔结构、比表面积、耐腐蚀等特性,在DSSC研究领域被广泛用作对电极(Kavan等,2011;Battumur等,2012;Liu等,2020a;Liu等,2020b;Liu等,2020c)。 Roy-Mayhew 观察到调整石墨烯中碳氧比例可提高电池效率(Roy-Mayhew et al.,2010)。Choi 等对石墨烯进行高温处理,并将其用于 DSSC 中,以提高效率(Choi et al.,2011)。近年来,将其他性能优异的材料与石墨烯复合成为研究热点(Peng et al.,2011;Wang et al.,2012)。Dou 等将 Ni12P5 粒子与石墨烯复合作为 DSSC 的对电极,获得了 5.7% 的效率,表明电化学性能有所提高(Dou et al.,2011)。Wen 等将 TiN 与氮掺杂的石墨烯复合材料用于提高电催化性能(Wen et al.,2011)。石墨烯与其他材料的复合材料已成为研究的热点(Peng et al.,2011;Wang et al.,2012)。
具有微波跃迁频率的固态量子比特(例如超导量子比特)处于量子信息处理的前沿。然而,即使是中等规模的超导量子比特的高保真度、同时控制仍然是一项挑战,部分原因是封装这些设备的复杂性。在这里,我们提出了一种微波封装设计方法,重点关注材料选择、信号线工程和杂散模式抑制。我们描述了使用用于开发 24 端口微波封装的模拟和测量验证的设计指南。分析量子比特环境发现在 11 GHz 以下没有杂散模式。材料和几何设计选择使封装能够支持寿命超过 350 μ s 的量子比特。这里介绍的微波封装设计指南解决了许多与近期量子处理器相关的问题。
摘要:结肠癌的异质性及其反应既提出了个性化医学的挑战和希望。挑战是开发以预测性和预后生物标志物为指导的有效的生物学个性化的治疗剂。目前,有几类候选生物标志物,包括基因组探针,抑制性RNA,免疫功能障碍的测定法,并且不容忘记,具体的组织病理学和组织化学特征。要开发有效的治疗学,候选生物标志物必须在可比的独立人群中获得资格和验证,这不小。这一过程及其随后在临床实践中的部署不仅涉及生物标志物与治疗的牢固关联,而且还要仔细注意代表性肿瘤部位选择的平淡无奇的方面,从而获得了完全充分的样本,该样本被保留并准备好优化高质量分析。将来,生物标志物分析结果的临床实用性将在人工智能技术的帮助下从相关的临床和基础科学数据中受益。通过应用个性化的,精选的生物标志物,对结肠癌的全面解释,个性化,更有效,更毒性的疗法将得到实现,从而实现了个性化医学的承诺。
本研究调查了通过微波吸收局部点燃金属化推进剂的能力。通过直接写入增材制造(3D 打印)构建了金属化高能复合膜,该膜在聚偏氟乙烯 (PVDF) 聚合物基质内结合了高质量负载的铝和钛纳米颗粒燃料。对 Ti 和 Al 纳米颗粒的功率吸收模拟表明,钝化壳成分可能在观察到的点火现象中起着重要作用。构建了各种感兴趣的架构以实现可预测的微波点火和推进剂传播。研究发现,尽管铝纳米颗粒和复合材料不会通过暴露于微波而点燃,但钛纳米颗粒可用作高效的反应性微波感受器,从而实现局部点火源。这种方法使得先前研究的高能 Al/PVDF 系统的各种架构能够制造出来,并在战略位置配备微波敏感的钛复合材料,作为铝系统的远程点火手段。
2微波动力电感检测器18 2.1导体和复杂导电率。。。。。。。。。。。。。。。。19 2.2超导性。。。。。。。。。。。。。。。。。。。。。。。。。。。。20 2.2.1基本现象学:库珀对和准粒子。。。21 2.2.2准颗粒生成和重组。。。。。。。。。24 2.2.3穿透深度和薄膜。。。。。。。。。。。。。。。30 2.2.4复杂的电导率:Mattis-Bardeen理论。。。。。。31 2.3微波谐振器和S-参数。。。。。。。。。。。。。。。37 2.3.1预序:微波网络和S-参数。。。37 2.3.2共振电路和质量因素。。。。。。。。。。。。。38 2.4动力电感探测器的原理。。。。。。。。。。。。。。43 2.4.1 MKID的表面阻抗。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 43 2.4.2响应性。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 44 2.4.3非线性和分叉。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 53 2.5灵敏度和噪声。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。43 2.4.1 MKID的表面阻抗。。。。。。。。。。。。。。。。。43 2.4.2响应性。。。。。。。。。。。。。。。。。。。。。。。。。。44 2.4.3非线性和分叉。。。。。。。。。。。。。。。。。。53 2.5灵敏度和噪声。。。。。。。。。。。。。。。。。。。。。。。。。。。56 2.5.1背景。。。。。。。。。。。。。。。。。。。。。。。。。。。57 2.5.2时间常数。。。。。。。。。。。。。。。。。。。。。。。。。59 2.5.3光子噪声。。。。。。。。。。。。。。。。。。。。。。。。。。61 2.5.4生成重组噪声。。。。。。。。。。。。。。62 2.5.5 tls噪声。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>63 2.6.6总NEP。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 。 div> 64 div>63 2.6.6总NEP。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>64 div>
图 1. 晶圆级基于 LN 的 MWP 信号处理引擎及其构建模块。a 基于 LN 的 MWP 处理引擎示意图,由将模拟电子信号忠实地转换为光域的高速 EO 调制部分和低损耗多用途光子处理部分组成。b 使用紫外步进光刻系统对 4 英寸晶圆级 LN 光子集成电路进行图案化拍摄。c 我们高速 MWP 系统基本构建模块的显微镜图像和关键性能指标,包括固有品质因数 ~ 6 × 10 6 的微谐振器、用于信号编码的低驱动电压和宽带强度和相位调制器、作为积分器的分插环谐振器、作为微分器的非平衡 MZI,以及作为二阶积分器和微分器的级联环和 MZI。 d 设备的假彩色扫描电子显微照片(SEM),分别显示波导的侧壁、微谐振器的耦合区域、波导和多模干涉(MMI)耦合器的横截面图。
MDR-8000 是阿尔卡特朗讯首屈一指的数字微波无线电,适用于长距离、点对点无线通信。灵活的平台提供旨在实现稳健运行的功能,同时降低您的总体拥有成本。MDR-8000 拥有一个支持 2-11 GHz 几乎所有频段的通用平台,可以满足您对高容量主干路由以及低容量支线的需求。它提供 2-32 DS1、1-3 DS3、OC-3 和 10/100/1000 Base-T 以太网的传输容量,并且只需更改容量密钥 TM 即可升级服务容量。支持所有这些选项的通用平台为用户提供了配置和装备整个网络的极大灵活性,同时简化了操作和维护。凭借业内最广泛的长途频段、最完整的接口和容量范围以及最高的系统增益,MDR-8000 是微波传输领域无可争议的领导者。
Aeroflex / Weinschel 。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.2 型号索引。。。。。。。。。。。。。。。。。。。。。。。。。。。。.4-6 产品索引 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.6-8 快递和 Argosy 销售。。。。。。。。。。。。。。。。。。。。。。。。。.9-11 新产品 .。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。.12-14 固定同轴衰减器。。。。。。。。。。。。。。。。。。。。。。.15-80 终端和负载。。。。。。....................81-132 可变衰减器(连续和步进) ........133-150 功率分配器和分配器 ....................151-164 移相器 ......................。。。。。。.165-170 直流模块 .。。。。。。。。。。。。。。。。.................171-176 同轴适配器 ............................... 177-184 平面盲配® 连接器 .................185-192 Planar Crown ® 连接器系统 ................193-198 可编程衰减器和衰减器/开关控制器 ..................199-260 子系统和配件 .....................261-282 美国销售代表 ........................283 全球销售代表 ...................284 订购信息 ................。。。。。。。。。.285 按字母顺序索引。。。。。。。。。。。。。。.............286-287 RoHs 合规性 ............。。。。。。。。。。。。。。。。。。。.287
关联粒子系统出现在现代科学的许多领域,代表了自然界中最难解决的计算问题之一。当相互作用变得与其他能量尺度相当时,这些系统中的计算挑战就会出现,这使得每个粒子的状态都依赖于所有其他粒子 1 。三体问题缺乏通解,强关联电子缺乏可接受的理论,这表明当粒子数或相互作用强度增加时,我们对关联系统的理解就会逐渐减弱。相互作用系统的标志之一是多粒子束缚态的形成 2–9 。在这里,我们开发了一个高保真可参数化的 fSim 门,并在一个由 24 个超导量子比特组成的环中实现自旋-½ XXZ 模型的周期量子电路。我们研究这些激发的传播,并观察它们对多达 5 个光子的束缚性质。我们设计了一种相敏方法来构建束缚态的少体谱,并通过引入合成通量来提取它们的伪电荷。通过在环和附加量子位之间引入相互作用,我们观察到束缚态对可积性破坏的意外恢复力。这一发现与不可积系统中的束缚态在其能量与连续谱重叠时不稳定的想法相悖。我们的工作为相互作用光子的束缚态提供了实验证据,并发现了它们在可积性极限之外的稳定性。