1 都灵理工大学电子与电信系,意大利都灵 10129;jorge.tobon@polito.it (JATV);giovanna.turvani@polito.it (GT);david.rodriguez@polito.it (DOR-D.);mario.casu@polito.it (MRC) 2 意大利国家研究委员会环境电磁传感研究所,意大利那不勒斯 80124;scapaticci.r@irea.cnr.it (RS);crocco.l@irea.cnr.it (LC) 3 那不勒斯费德里科二世大学电气工程与信息技术系,意大利那不勒斯 80125;gbellizz@unina.it 4 巴黎电气工程组 (GeePs)、法国国家科研中心、中央理工高等电力学院、巴黎南部大学、Univ.巴黎萨克雷大学,索邦大学,91190 伊维特河畔吉夫,法国; nadine.joachimowicz@paris7.jussieu.fr 5 Laboratoire des Signaux et Systèmes (L2S), Université Paris-Saclay, CNRS, CentraleSupélec, 91190 Gif-sur-Yvette, France; bernard.duchene@l2s.centralesupelec.fr 6 那不勒斯费德里科二世大学高级生物医学科学系,80131 那不勒斯,意大利; enrico.tedeschi@unina.it * 通讯:francesca.vipiana@polito.it
近年来,随着微波加热,雷达和航空航天的持续发展,人们越来越关注微波炉吸收材料(MAM),并且其开发和应用越来越广泛。在民用用途中,微波炉被广泛用于通信,雷达检测和其他领域[1,2]。这不仅为人类活动提供了便利,而且还导致严重的电磁波吸收(EMA)污染和电磁干扰[3,4]。在军事中,微波雷达已在各个国家广泛使用,并已成为一种无处不在的反坦健康技术,该技术已成为与国家安全有关的重要问题[5,6]。因此,全世界的研究人员致力于研究新的妈妈,希望能有效地吸收EWA来解决上述问题。bionics是一种模拟设计技术系统中生物学原理的领域,旨在赋予人工系统具有相似甚至卓越的生物学功能[7,8]。通过显微镜技术的进步,已经揭示了有机体在视觉上出现“普通”但具有显着功能的生物具有复杂的微观结构。这些功能不仅源于原子或分子排列,而是源于“功能原始素”的顺序组装,该组件组成几个比分子和原子大的数量级[9-11]。如图1,仿生象征的物体包括各种生物,从动物和植物到人体器官[12]。bionics通过两个主要方面实现了其目标:结构性培训和功能性生物学。结构仿生学涉及代表生物体的宏观或微观体系结构以达到意外目的[13]。同时,功能仿生学模仿了生物体固有的机械,光学,声学,电气和磁能力。例如,荷叶叶子的微纳维尔乳头“乳头”结构,由蜡质材料组成,可以实现超氧化和自我清洁的特性[14]。另外,变色龙体内的鸟嘌呤颗粒的周期性排列形成天然光子晶体,表现出动态的颜色范围[15],说明了功能仿生的丰富性和复杂性。此外,值得注意的是,化学成分在仿生学中也起着作用,因为它通常决定了独特的特性
摘要:2D材料在许多领域都显示出令人兴奋的特性,但是应用程序的开发受到低收益,高处理时间和当前去角质方法质量受损的障碍。在这项工作中,我们使用了MOS 2的出色MW吸收特性来诱导快速加热,从而产生吸附的,低沸点溶剂的近乎稳定性蒸发。突然的蒸发产生了内部压力,可以以高效率分离MOS 2层,并且通过分散溶剂的作用将其保持分离。我们的快速方法(90 s)给出了高度的高产(47%,在0.2 mg/ml时为47%,在1 mg/ml时为35%)高度脱落的材料(4层以下90%),大面积(高达几μm2)和优质的质量(未检测到显着的MOO 3)。关键字:钼二硫化物,过渡金属二盐元素(TMDC),微波驱动的去角质,大面积超薄片,高横向尺寸,高产量t
传统的有线电力传输方法是电气时代进步的基石,因其可靠性而被广泛采用。通过传输电缆,来自重要来源的能源为各行各业提供能源。然而,随着技术的进步和人类生活方式的演变,传统有线传输的缺点变得越来越明显:刚性、兼容性问题(例如与植入式医疗设备)和偶尔的安全风险。因此,人们越来越迫切地希望使用无线电力传输 (WPT) 来消除充电过程中对物理连接的需要。无线电力传输 (WPT) 正沿着两条主要途径发展:近场技术,如电容式电力传输 (CPT) 和电感式电力传输 (IPT),以及远场技术,如太阳能卫星 (SPS) 概念。SPS 最初由美国国家航空航天局 (NASA) 在 20 世纪 70 年代提出,被设想为太空中的太阳能转换器,将电力传输到地球。在长距离电力传输中,SPS 技术可以采用各种策略。日本宇宙航空研究开发机构 (JAXA) 已开展了大量实际应用研究。与激光电力传输 (LPT) 相比,微波电力传输 (MPT) 系统在传输和接收方面通常具有更高的效率,且大气衰减更低。本文主要关注对微波电力传输 (MPT) 系统的全面回顾。印度电网的输配电损耗居全球首位,世界资源研究所 (WRI) 估计为 27%,而印度各政府部门报告的数字超过 40%。这些损失源于电网的技术效率低下和普遍存在的盗窃行为。利用最先进的技术为这一紧迫问题提供了可行的解决方案。
摘要。在为未来的 L 波段被动微波土壤水分卫星任务做准备时,研究人员使用了地面、飞机和卫星传感器。在卫星传感器中,只有一种仪器在 L 波段提供任何遗产:20 世纪 70 年代运行的 Skylab S-194 仪器。在这里找到并恢复了来自 S-194 的数据集。这些 Skylab 任务的数据已在少数应用中进行了分析和报告,但是,这些研究使用了有限的验证,并且仅利用了收集到的部分数据。在本次调查中,我们探索了使用气候模型再分析项目的产品作为辅助或替代验证数据。分析表明,再分析输出不准确,价值有限。使用基于辐射传输的土壤水分检索算法进行的测试与可用于验证的观测结果相匹配。这些结果支持使用这种方法作为工具来了解更广泛的植被条件对土壤水分检索的影响。
能源不确定性导致石油价格波动,研究人员将注意力转向可再生能源和可持续材料来源。热带国家拥有丰富且廉价的环境友好型生物资源和农作物油。它已被确定为马来西亚可持续和可再生能源和材料的主要来源之一。马来西亚在油棕种植方面的经验可以为其他采用合适作物种植的国家提供食品、生物化学品、能源和材料供应需求。棕榈油工业的加工就是生物质利用的一个例子。该报告介绍了几种可能的途径,以提供能源以及来自生物资源的潜在增值产品。生物质热转化加工的趋势是将微波能应用于可再生生物燃料、材料和化学品。强调了农产品和农业固体废物在生物燃料、材料和化学品方面的潜在用途。这些生物燃料、材料和化学品的应用已在世界一些国家得到应用。只有当该技术在当地开发、制造和调试,并利用当地生产的生物质时,该技术的实施和利用才是可行的。凭借先进的研发力量,加上当地的专业知识,可以开发和生产本土技术,从而降低进口技术的高成本。
这是以下文章的同行评审版本:Wang,C.,LV,Z.,Mohan,M.P.,Cui,Z.,Liu,Z.,Jiang,Y.,Li,J.,Wang,C.,Pan,S.&Chen,X。(2021)。穿衣蛋白启发的可拉伸,微波启发性的Metascale。Advanced Materials,33(41),2102131-,已在https://doi.org/10.1002/adma.202102131上以最终形式出版。本文可以根据Wiley使用自构货币版本的条款和条件来将其用于非商业目的。
图 4. (a) 三个硅基 CPW 谐振器的内部品质因数 (𝑄 𝑖) 与平均光子数 < 𝑛 𝑝ℎ > 的关系,散点图为测量数据,实线是基于公式 (4) 的拟合数据,误差线在每个数据点的顶部和底部用大写字母表示,(a) 40 nm Ta 在 𝑇= 77 mK。(b) 𝑓 𝑟 = 3.654 在三个不同温度下。(c) 80 nm Ta 在 𝑇= 44 mK 时和 (d) 100 nm Ta 在 𝑇= 40 mK 时。
CO-OPS 海洋系统测试和评估计划促进新技术向运营状态的过渡,从研发社区中选择新开发的传感器或系统,并将其带入监测环境。OSTEP 为使用现有传感器提供了可量化和可辩护的理由,以及选择新系统的方法。该计划建立并维护现场参考设施,并与面临类似挑战的其他机构合作,在非运营现场环境中检查设备。通过 OSTEP,对传感器进行评估,开发质量控制程序并生成维护例程。现场使用的参考系统的质量由严格的可追溯校准和冗余传感器保证。