课程描述:信号和电源完整性这一主题涉及理解和缓解使用互连在整个电气系统中忠实分配信号和电源的各种障碍。最常见的是,该主题涉及微电子系统,该系统由封装内安装的多个硅(或其他半导体)集成电路组成,并安装在一个或多个印刷电路板上。信号完整性问题在整个电子学历史中都很重要,但最近的趋势表明需要将该主题发展为一项严格的努力。理解信号完整性的基本原理并知道如何将这些原理应用于特定应用,对于成功开发射频和高速数字电路至关重要。本课程旨在让学生了解确保现代电子系统中信号和电源完整性的基本原理。信号完整性问题在整个电子学历史中都很重要,但最近的趋势表明需要将该主题发展为一项严格的努力。理解信号完整性的基本原理并知道如何将这些原理应用于具体应用,对于成功开发射频和高速数字电路来说至关重要。事实上,我们正达到一个融合点,许多为微波频率电路设计而开发的技术和工具现在正被用于解决数字电路中的信号完整性问题,同时信号完整性的正式技术现在正被用于深入了解微波电路中以前难以解决的问题。
对在医疗领域的微波成像(MWI)的潜在用途(主要是由于其便携性,低成本,安全使用非电源辐射和非侵入性)的兴趣越来越大。它已被应用,例如用于乳腺癌诊断[1]和脑冲程检测[2],[3]。MWI工作原理是在微波频率下健康组织与受影响的组织之间存在介电对比度。为了解决结果不良问题,可以使用对比度倒置(CSI)方法定量重建感兴趣域(DOI)中的介电特性[4]。CSI是一种基于优化的算法,可最大程度地降低对比度和对比源变量中特殊形成的功能。在这里,CSI算法与有限元方法(FEM)求解器[5]结合起作用,该方法将整个体积分散使用,不合理且不均匀。这使我们能够建模完整的天线几何形状,包括合成环境中的同轴饲料端口[6],从而导致更现实的模拟场景。它还允许我们在反转模型中包含一个不均匀的数值背景(类似于[7],[8]中描述的过程)。尽管场数使用线性边缘元件,但最初使用脉冲基函数来表达FEMCSI的对比度和对比度的脉冲函数[9],[10]。在这里,目的是提出一种使用磁场的基础函数获得的替代离散化,也用于对比源变量。对于简化的方案,在[11]中报告了初步结果,其中标准实施[12]与提议的
里德堡偶极子阻塞已成为诱导中性原子量子比特之间纠缠的标准机制。在这些协议中,将量子比特态耦合到里德堡态的激光场被调制以实现纠缠门。在这里,我们提出了一种通过里德堡修饰和微波场驱动的自旋翻转阻塞来实现纠缠门的替代协议 [ 1 ]。我们考虑在铯的时钟状态中编码的量子比特的具体示例。辅助超精细态经过光学修饰,使其获得部分里德堡特性。因此,它充当代理里德堡态,具有充当阻塞强度的非线性光移。可以调制将量子比特态耦合到该修饰辅助态的微波频率场以实现纠缠门。为光学区域设计的逻辑门协议可以导入到这种微波区域,对此实验控制方法更为稳健。我们表明,与通常用于里德堡实验的强偶极子阻塞模式不同,采用中等自旋翻转阻塞模式可使门运行速度更快,里德堡衰变更小。我们研究了可以产生高保真度双量子比特纠缠门的各种操作模式,并描述了它们的分析行为。除了微波控制固有的稳健性之外,我们还可以设计这些门,使其对激光振幅和频率噪声更具稳健性,但代价是里德堡衰变略有增加。
由于低成本无人机的普及,小型无人机的高爆检测最近已成为一个非常重要的课题,因为这对安全构成了越来越大的潜在风险[1][2]。FMCW 雷达被认为是最适合无人机检测的解决方案之一,因为它结构简单,具有短距离检测能力[1]-[4]。小型无人机的检测是一项具有挑战性的任务,因为它们的尺寸非常有限,并且采用非反射材料,因此雷达截面 (RCS) 非常小。因此,只有利用毫米波频率、高发射功率以及具有低噪声系数 (NF) 和高动态范围的接收器,才能优化雷达检测范围和分辨率。在这种情况下,氮化镓 (GaN) 微波技术代表了性能最佳的解决方案,因为它们为发射器和接收器微波前端提供了最先进的性能系数[4]-[6]。利用微波频率下卓越的 GaN 功率密度,有利于实现紧凑型高功率发射器,以增强无人机目标的弱回波信号(低 RCS)。另一方面,由于兼具低噪声和宽动态范围特性,GaN 技术在 RX 部分也非常有吸引力 [5]-[9]。这一特性对于用于无人机检测的 FMCW 雷达接收器至关重要,因为 LNA 需要检测非常低的无人机回波信号(接近热噪声水平),同时在存在强干扰/阻塞信号的情况下保持其线性度,这些信号通常是由于雷达杂波和其自身发射器功率放大器的泄漏造成的 [3][4]。在本文中,我们描述了一种基于 GaN 的 Ka 波段 MMIC LNA,可用于 FMCW 雷达接收器,用于小型无人机检测。采用 mmW-GaN 技术可以同时瞄准低 NF、高增益和大动态范围,从而在 Ka 波段上方实现无与伦比的综合性能。
重大技术进步依赖于对电荷和自旋的控制和利用——这是电子的两个基本特性。最近,人们对磁振子学领域的兴趣日益浓厚,该领域试图了解由于自旋或磁振子的集体振荡而形成的模式的物理原理。利用磁振子提供了额外的最小化损失的范围,因为不需要传输电子。在 TIFR 纳米电子学小组最近的一项研究中,在具有范德华层状晶体结构的反铁磁材料中观察到驻自旋波模式。当微波频率的电磁信号在磁场存在下与反铁磁体中的磁矩相互作用时,这些模式被激发。这项研究呈现出一个令人兴奋的前景,因为它是范德华材料中驻自旋波的首次观察。该团队研究的材料三氯化铬 (CrCl 3 ) 属于三卤化铬家族,该家族也是首次报道在 2D 极限下(即当晶体变薄至单个原子厚度时)表现出磁性的材料之一。由于这些材料具有层状可裂结构,因此有可能用于现代电子设备的小型化。虽然在接近 THz 频率的其他反铁磁体中也发现了驻自旋波模式,但在本研究中,该团队在低 GHz 微波频率下激发了驻自旋波模式,该频率通常用于通信和量子信息相关研究。这项研究于 2020 年 11 月 27 日在线发表在《先进材料》杂志上。
我们用电磁捕获的原子离子晶体来表示量子比特或自旋,每个离子内的两个电子能级表现为有效量子比特或自旋 1/2 粒子。电子能级的具体选择取决于原子元素以及用于操纵和测量量子比特状态的所需控制场类型。这些量子比特状态对于执行量子信息处理的最重要特征是 (a) 能级寿命长且表现出出色的相干性,(b) 能级状态具有适当的强光学跃迁到辅助激发态,允许通过光泵浦进行量子比特初始化并通过荧光进行量子比特检测,以及 (c) 量子比特通过可外部控制和门控的相干耦合进行交互。这将原子种类限制为少数元素和量子比特/自旋态,这些元素和量子比特/自旋态要么被编码为具有射频/微波频率分裂的单个外电子原子的 S 1 / 2 超精细或塞曼基态(例如,Be + 、Mg + 、Ca + 、Sr + 、Ba + 、Cd + 、Zn + 、Hg + 、Yb + ),要么被编码为具有光频率分裂的单个或双外电子原子的基态和 D 或 F 亚稳态电子激发态(例如,Ca + 、Sr + 、Ba + 、Yb + 、B + 、Al + 、Ga + 、In + 、Hg + 、Tl + 、Lu + )。某些种类(例如,Ba + 、Lu + 、Yb + )具有足够长的 D 或 F 亚稳态激发态寿命,以在其超精细或塞曼能级中承载量子比特,并具有射频/微波分裂。
芯片尺度多模光力系统具有相对于单模对应物的传感,计量和量子技术具有独特的好处。插槽模式光力晶体可实现单个光学腔的侧带分辨率和两个微波频率机械模式的大型光学机械耦合。仍然,以前的实现仅限于纳米束几何形状,在超高温度下,其有效的量子合作受到其低热电导率的限制。在这项工作中,我们设计和实验表明了二维机械 - 光学机械(MOM)平台,该平台可分散地构造出缓慢的光子引导的光子光子 - 晶波导模式和两个慢速〜7 GHz语音电线模式在物理上不同区域中定位于物理不同的区域。我们首先在长波导部分中展示了光学机械相互作用,揭示低于800 m/s的声学群速度,然后转到具有量身定制的机械频率差的模式差距绝热异质结构腔。通过光力光谱法,我们证明了光学质量因子Q〜10 5,真空磁力耦合速率,G o /2π,1.5 MHz为1.5 MHz,以及除了单模图片以外的动态反作用效应。在较大的功率和足够的激光腔内失调时,我们证明了涉及单个机械模式的再生光学振荡振荡,通过调制输入激光驱动器以其频率差的调制,将两种机械模式扩展到两种机械模式。这项工作构成了对工程MOM系统的重要进步,该系统几乎是退化的机械模式,这是混合多部分量子系统的一部分。
由于低成本无人机的扩散代表了安全性的潜在风险增加[1] [2],因此对小小的无人机的检测最近已成为一个非常重要的话题。FMCW雷达被认为是无人机检测的最合适的解决方案之一,因为其架构简单性和短距离检测能力[1] - [4]。对小型无人机的检测代表了一项具有挑战性的任务,因为它们的尺寸非常有限和非反射材料组成意味着非常小的雷达横截面(RCS)。出于这个原因,只能通过利用毫米波频率,高发射功率和具有低噪声图(NF)和高动态范围的接收器来实现雷达检测范围和分辨率的优化。在这种情况下,在性能方面,硝酸盐(GAN)微波技术代表了最佳解决方案,因为它们为发射器和接收器微波前端提供了最先进的优点图[4] - [6]。在微波频率下对上GAN功率密度的开发是实现紧凑,高功率发射器所需的优势,以增加无人机目标的弱回声信号(低RCS)。另一方面,由于低噪声和广泛的动态范围特征的结合,GAN技术在RX部分中也非常有吸引力[5] - [9]。在本文中,我们描述了一种基于GAN的Ka-band MMIC LNA,该LNA将在FMCW雷达的接收器中被利用,以进行小型无人机检测。This feature is of primary importance in a FMCW radar receiver for drone detection, since the LNA needs to detect very low drone-echo signals (close to the thermal noise level), while maintaining its linearity even in presence of strong interferer/blocking signals, which are typically due to radar clutter and the leakage of the power amplifier of its own transmitter [3][4].MMW-GAN技术的采用使得可以同时针对低NF,高增益和大型动态范围,从而导致上KA频段无与伦比的组合性能。
对于高相干性固态量子计算平台来说,微波频率下低损耗的电介质是必不可少的。在这里,我们通过测量集成到超导电路中的由 NbSe 2 –hBN–NbSe 2 异质结构制成的平行板电容器 (PPC) 的品质因数,研究了六方氮化硼 (hBN) 薄膜在微波范围内的介电损耗。在低温单光子范围内,提取的 hBN 微波损耗角正切最多在 10 −6 中间范围内。我们将 hBN PPC 与铝约瑟夫森结集成,以实现相干时间达到 25 μs 的传输量子比特,这与从谐振器测量推断出的 hBN 损耗角正切一致。与传统的全铝共面传输相比,hBN PPC 将量子比特特征尺寸缩小了约两个数量级。我们的研究结果表明,hBN 是一种很有前途的电介质,可用于构建高相干量子电路,它占用空间大大减少,能量参与度高,有助于减少不必要的量子比特串扰。广义的超导量子比特包括由电感和电容元件分流的约瑟夫森结,它们共同决定了它的能谱 1 。虽然理想情况下,组成超导量子比特的材料应该是无耗散的,但量子比特退相干的主要因素是量子比特的电磁场与有损体积和界面电介质的相互作用 2 。在典型的超导电路中,介电损耗可能发生在约瑟夫森结的隧穿势垒中,以及覆盖设备的许多金属和基底界面的原生氧化层中 3、4 。这些电介质通常是具有结构缺陷的非晶态氧化物,可以建模为杂散两能级系统 (TLS)。虽然这些 TLS 的微观性质仍有待完全了解,但已确定 TLS 集合与超导量子电路中的电磁场之间的相互作用限制了量子比特的相干性和超导谐振器的品质因数。人们还怀疑 TLS 可能存在于设备制造过程中留下的化学残留物的界面处 4、5。
无线设备和带宽的互联网应用程序的显着爆炸已通过超高数据速率提高了对无线通信的需求。无线交通量可以在2030年到2030年匹配甚至超过有线服务,并且需要保证高精度的无线服务,而峰值数据速率超过100 GBIT/s,最终达到1 TBIT/s。为了满足指数增长的流通需求,正在探索无线电频谱中的新区域。Terahertz乐队夹在微波频率和光学频率之间,由于其丰富的频谱资源而彻底改变了通信技术的下一个突破点。它被认为是未来利率刺激应用的有前途的候选人,例如6G通信。在2019年世界广播传播会议(WRC-19)上,宣布允许在275 GHz – 450 GHz频率范围内识别用于土地移动和固定的服务应用,这表明潜在的标准化了Terahertz Band的低频窗口的潜在标准化,以实现近距离通信的无效通信。是出于Terahertz无线通信的潜力的动机,该特刊报告了有关宽带Terahertz设备和通信的最新技术突破,以及其他频带的新技术,这些技术也可以激发Terahertz研究。我们认为,这些作品还可以激励对Terahertz通信设备和6G通信和其他典型应用程序方案的研究。Yang等。Yang等。五项研究[1-5]介绍了Terahertz通信的关键设备,包括Terahertz可调智能表面[1],Terahertz Micro-机电系统(MEMS)开关[2],共振三重频段Terahertz Terahertz热检测器[3] [5],可以有效地支持宽带Terahertz系统。fur-hoverore,我们还针对该特刊的低频频段选择了三项有趣的研究[6-8],包括设计5G多输入多输出(MIMO)天线[6,7]和差分低噪声放大器[8]。随着宽带Terahertz设备的进步以及新型的数字信号处理程序的设计,可以实现高速Terahertz通信。在本期特刊中,分析并证明了三个Terahertz通信系统[9-11],包括144 Gbps光子学Terahertz Terahertz通信系统在500 GHz [9] [9],W频段通信和感应收敛系统[10],以及与Secure Terahertz与Perfect Terahertz Commentionation(Pefterial Terahertz)和多个多元cecters(Pecters)和多个多元cecters(Pefters)的分析。为了克服Terahertz通讯链接的高损失和视线连通性挑战,可重新配置的智能表面(RISS)得到了广泛的分析。但是,由于截止频率限制和Terahertz频率较高的损失,用于5G RI的活动元素通常是不切实际的,对于将来的6G通信而言。[1]对在Ter-Ahertz乐队中运行的可侦查可及可及的元时间进行了全面审查,并有可能协助基于
