自然和我们的日常生活都被微塑料和纳米塑料所包围。他们的存在对环境和生物的健康有潜在的风险。尽管塑料在工业领域的优势(例如低成本和多功能性)最初是发明的,但它们的降解会导致不容易监测或检测的小颗粒,并且可以渗透到体内,而在本质上可能会持续数百年。他们的检测,识别和分析对于确定所有人的危险水平至关重要。全球塑料产量的兴起导致环境中微塑料和纳米塑料的患病率不断增加。缺乏标准化的处理方法使管理环境影响的努力变得复杂。目前的状态以及未来几年的预测似乎黯淡,促使科学家和立法者加强了开发和实施更好的解决方案的努力。
模拟细胞微环境对于类器官和器官芯片研究非常重要。当前的课题之一是将类似血管的结构引入培养系统以改善细胞和组织功能,这值得在设计和系统考虑方面付出特别的努力。基于标准的设备配置,我们制作了一个类似血管的组件,可以轻松集成以进行细胞共培养。该组件由位于开放通道顶部的嵌入单层明胶纳米纤维组成。然后可以用带有模制腔、通道和标准 Luer 连接器的上部塑料板将其封闭。首先将人脐静脉内皮细胞 (HUVEC) 引入类似血管的通道中,并借助旋转装置进行三维培养。然后,施加流动进行细胞骨架重塑,得到致密且排列整齐的 HUVEC 层。随后,将人类胶质母细胞瘤细胞(U87)引入纤维层的上部,并施加流动以进行上部细胞层培养。我们的结果表明,在单层明胶纳米纤维的两侧均形成了 HUVEC 和 U87 细胞层,从而为各种共培养试验提供了可靠的支持。
我们开发了一种简单的方法来制造微笼和笼状肿瘤球体,用于基于微流控芯片的检测。微笼装置由一系列蜂窝状隔间组成,底部有一层交联和琼脂糖涂层的明胶纳米纤维,顶部有一个 200 μm 孔径的网格。U87-MG 单细胞分散在网格中,孵育后肿瘤球体被限制在每个笼子隔间中。正如预期的那样,肿瘤球体以相同的大小一个接一个地分布在每个隔间中,并且在隔间内生长。球体的最终尺寸受到扩散和限制的限制。如果笼子的高度较小,则肿瘤下方的纳米纤维层可能会因生长中的肿瘤的机械应力而发生偏转。如果笼子的高度很大,肿瘤会自由生长而不受压力,但其大小会受到扩散的限制。在这两种情况下,肿瘤往往保持球形。为了说明该方法的稳健性,将肿瘤笼状装置可逆地集成到用于药物测试的微流体芯片中。我们的结果表明,在切向流条件下,考布他汀 A-4 对肿瘤分解有明显的影响。
摘要简介:由于生物医学的最新进展以及对疾病分子机制的越来越多的理解,医疗保健方法倾向于预防和个性化医学。因此,近几十年来,跨学科技术(例如微流体系统)的利用具有显着增加,以提供更准确的高通量诊断/治疗方法。方法:在本文中,我们将回顾微流体技术创新的摘要,以改善个性化的生物分子诊断,药物筛查和治疗策略。结果:微流体系统通过为流体流动,细胞的三维生长以及分子实验的小型化是在健康和治疗领域的有用工具。这些条件使潜力能够进行类似的研究;疾病建模,药物筛查和提高诊断方法的准确性。结论:由于其能够以较小的样本量,降低成本,高分辨率和自动化进行诊断测试,因此微流体设备已成为有前途的护理(POC)和个性化药物工具。
抽象的微流体学是一种以微米尺度操纵流体的技术,已成为医疗保健中的一种变革性工具,尤其是在护理点(POC)测试中。微流体系统的整合已实现了快速诊断,样本需求最少和高通量测试,从而提供了临床结果的显着改善。本评论重点介绍了微流体学的基本原理,3D打印等制造技术的进步以及它们在检测和管理传染性和慢性疾病中的应用。尽管有希望,但基于微流体的POC设备的广泛采用仍面临挑战,包括可扩展性,成本效益和监管障碍。未来的方向表明,个性化医学,数字健康和混合诊断平台的潜在突破。微流体仍然是一项有前途的技术,可以在全球范围内弥合医疗保健差距,尤其是在资源受限的环境中。关键字:微流体,护理点测试,实验室芯片,诊断,制造技术,3D打印。
单个粒子冷冻EM可以通过将嵌入在纳米厚的玻璃体冰中的几百万个纯化的蛋白质颗粒可视化到几百万纯化的蛋白质颗粒,从而重建蛋白质的接近原子或什至原子分辨率3D蛋白质。这对应于纯化蛋白质的皮克图,这些蛋白质可以从几千个细胞中分离出来。因此,Cryo-Em具有最敏感的分析方法之一,该方法提供了高分辨率蛋白质结构作为读数。实际上,准备低温EM网格需要超过一百万倍的起始生物材料。为了缩小差距,我们开发了一种微分离(MISO)方法,该方法将基于微流体的蛋白质纯化与冷冻EM网格制剂相结合。我们验证了可溶性细菌和真核膜蛋白的方法。我们表明,Miso可以从一个微克的靶蛋白微克开始,并在几个小时内从细胞到冷冻EM网格。这将纯化缩短了几百到几千倍,并为迄今无法访问的蛋白质的结构表征打开了可能性。
Uzorka A,Musa B,Kibirige D,Makumbi D Kampala国际大学,乌干达摘要的摘要医疗保健游戏改变者包括由微流体技术驱动的服务点(POC)医疗微型解析。 这些微型,可运输的技术通过提供快速诊断,个性化治疗和监测来彻底改变患者护理。 这项研究研究了微流体POC技术的最新发展,重点是用于芯片,药物管理和血液分析的系统。 最近的发展改善了疾病建模,允许精确的药物给药,并使血液分析更加以患者为中心。 通过与医疗保健系统的集成和通信可改善患者护理和远程监控。 调节组织和成本效益仍然是问题。 可持续技术,人工智能(AI)整合和量身定制的药物的出现将为负担得起,有效的医疗保健铺平道路。 关键字:护理点(POC),微发频,微流体,芯片,远程医疗Uzorka A,Musa B,Kibirige D,Makumbi D Kampala国际大学,乌干达摘要的摘要医疗保健游戏改变者包括由微流体技术驱动的服务点(POC)医疗微型解析。这些微型,可运输的技术通过提供快速诊断,个性化治疗和监测来彻底改变患者护理。这项研究研究了微流体POC技术的最新发展,重点是用于芯片,药物管理和血液分析的系统。最近的发展改善了疾病建模,允许精确的药物给药,并使血液分析更加以患者为中心。通过与医疗保健系统的集成和通信可改善患者护理和远程监控。调节组织和成本效益仍然是问题。可持续技术,人工智能(AI)整合和量身定制的药物的出现将为负担得起,有效的医疗保健铺平道路。关键字:护理点(POC),微发频,微流体,芯片,远程医疗
2023年是自罗德尼·劳登(Rodney Loudon)的经典和有影响力的教科书《光量子理论》 [1]出版以来的50年。可悲的是,这也是他去世后的一年。这两个事件的并置使我们建议进行哲学交易,这是一个特殊问题,在该问题中,受邀作者可能至少呈现Rodney和其他先驱者启发的现代量子光学范围的至少一部分。在这篇简短的文章中,我们最简要介绍了量子光学领域及其开发方式。我们的目标只是为随后的论文提供设置。有了事后看来,我们可以看到光量子理论的三个版本如何[1-3],请参见图1与量子光学领域保持同步并标记其进步。
tronics 任务: 开发生化检测方法 优化现有的液滴微流体工作流程和设备 从环境 DNA 样本创建宏基因组文库 使用无细胞表达平台进行蛋白质合成 对宏基因组样本产生的 DNA 文库进行超高通量筛选 使用 Python 或 R 分析高通量数据集 将研究结果传达给国际项目伙伴和科学界 我们提供: 三年合同(65%),工资按照 TV-L E13 计算 位于加兴 TUM 最大校区的熟悉且协作的研究环境 作为 TUM 博士生,您将自动加入 TUM 研究生院并受益于进一步的
。CC-BY 4.0 国际许可证永久有效。它是在预印本(未经同行评审认证)下提供的,作者/资助者已授予 bioRxiv 许可,可以在该版本中显示预印本。版权持有者于 2024 年 11 月 15 日发布了此版本。;https://doi.org/10.1101/2023.01.04.522827 doi:bioRxiv 预印本