对于月球表面的开发,日本国内外都在开发月球轨道站 (Gateway)、月球着陆器和月球探测车。此外,还正在研究旨在在月球表面生活的建筑和发电技术。特别是,为载人操作而设计的系统需要配备防护结构,以防可能来袭的微流星体和轨道碎片 (MMOD) 造成人员伤亡 (1)。载人航天器的典型 MMOD 防护结构是惠普尔防护罩,由称为“保险杠”的板和后壁组成,保险杠通过隔离物 (2) 连接到后壁的外表面,如图 1 (a) 所示。目前运行的国际空间站(ISS)日本实验舱(JEM)和H-II转移飞行器(HTV)均采用了三菱重工株式会社开发的MMOD防护结构,没有因微流星体或空间碎片撞击而出现功能损坏(图1(b))。
为了实现人类在月球上的可持续、永久存在,NASA 必须提供安全避难所,以保护宇航员和设备免受辐射、极端高温和微流星体 (MM) 的伤害。规划和开发一个强大的安全避难所包括审查 NASA 在场地准备、挖掘、风化层转移、地面作业、自主监测和维护、先进制造和现场资源利用 (ISRU) 方面的活动,以确定实施安全避难所的最佳方法。这些 NASA 活动是作为 NASA 兰利进行的一项贸易研究的一部分进行审查的,旨在评估技术需求和估计的技术就绪水平 (TRL)。本文全面回顾了月球安全避难所的建立和维持运营中的作用和自主水平。
摘要 近十年来,自修复材料在空间应用领域变得极具吸引力,这是由于其技术的发展以及随之而来的空间系统和结构设计可能性,这些系统和结构能够在与微流星体和轨道碎片撞击、意外接触尖锐物体、结构疲劳或仅仅是由于材料老化而造成损坏后进行自主修复。将这些新材料整合到航天器结构设计中将提高可靠性和安全性,从而延长使用寿命和任务。这些概念将为建立新的轨道站、在月球上定居和人类探索火星带来决定性的推动力,从而实现新的任务方案。本综述旨在介绍最新、最有前景的空间应用自修复材料和相关技术,以及与它们当前的技术局限性以及空间环境的影响相关的问题。在介绍太空探索和自修复概念的前景和挑战之后,简要介绍了空间环境及其对材料性能的可能影响。然后对自修复材料进行详细分析,从一般的内在和外在类别到具体的机制。
课程概述 MSc 课程包含 90 ECTS 学分。学生必须完成 8 个核心模块和 4 个选修模块以及一个实习模块。如果核心模块或选修模块与学生之前的学习有很大重叠,则可以不选择。核心模块如下所示。选修模块可以从 UCD 中的任何现有模块中选择,但需与课程主任协商。 核心模块 空间环境(PHYC 40660,5 ECTS,第 1 学期) 模块描述 向学生提供空间环境的概述,分为以下五个部分:真空环境(地球场、太阳-行星连接);中性环境(大气物理学);等离子体环境(电离层、磁层、地磁风暴);辐射环境(捕获辐射带、太阳质子事件、银河宇宙射线);和微流星体/轨道碎片环境(经验模型)。还讨论了与航天器设计相关的其他问题,例如不同卫星轨道的显著特征及其在一系列太空应用(例如地球观测、通信、导航、行星科学、天体物理学和宇宙学)中的用途。主要航天国家现有和计划中的运载火箭的能力、火箭推进的基本原理、振动控制和航天器平台也得到了发展。学习成果完成本课程后,学生应能够:• 比较和对比地球和太空环境;• 确定太空环境对卫星的主要影响;• 为特定的太空应用构建合适的轨道;• 解决相关领域的定量问题;• 将基本物理原理应用于火箭推进和运载火箭的选择• 确定火箭发动机设计和开发的基础• 量化火箭发动机的关键性能参数
极端太空环境,例如太空真空、辐射、极端热环境和热循环、锯齿状月球尘埃、微重力、微流星体和轨道碎片 (MMOD)、推力羽流喷射物及其协同不利影响,都是对外行星和卫星进行安全和可持续太空探索的艰巨挑战。长时间的太空辐射暴露会使材料和结构变脆,而磨蚀性的锯齿状尘埃颗粒会严重磨损和侵蚀运动部件,导致过早失效。为了应对甚至缓解这种潜在的故障,需要坚固而特殊的材料,以使包括 Artemis 计划在内的 NASA 任务可持续进行,并将服务和维修需求降至最低。本研究报告称,含硼夹杂物 B 4 C 可以显著提高铝合金 (Al6061) 的耐磨性和辐射屏蔽/抗性,从而延长其在极端太空环境中的使用寿命。随着 B 4 C 夹杂物的增加,拉伸强度在室温和高温 (200˚C) 下都增加高达 20 vol%,而热导率则随着 B 4 C 浓度的增加而逐渐降低。与纯 Al6061 相比,当 Al6061 中添加 50vol% B 4 C 时,中子屏蔽效能提高了 110 倍以上。还利用在线太空辐射评估工具 (OLTARIS) 计算研究了银河宇宙射线 (GCR) 和太阳粒子事件 (SPE) 下的屏蔽效能。通过添加 B 4 C,可有效抑制通过 Al6061 基质的二次辐射引起的不利影响,从而提高对 GCR 和 SPE 的屏蔽效能。B 4 C 中硼的存在是增强对中子、GCR 和 SPE 环境辐射屏蔽能力的主要原因。
Pierre OMALY (CNES) 由法国国家空间研究中心 (CNES) 牵头的“太空关怀技术” (T4SC) 计划在实施法国新的太空运营法规方面发挥着关键作用。这些法规对发射器和太空物体的设计、制造和操作提出了更严格的要求,旨在提高太空运营安全性,最大限度地降低对公众和环境的风险,并减少太空垃圾的产生。T4SC 与这些目标完美契合,它提供了一套技术解决方案和实用工具,帮助航天业利益相关者满足新的监管要求。关键创新包括:Detumbler:一种专利设备,用于稳定故障航天器,便于恢复。EOLTS:一种精确的定位系统,用于进行明智的机动,使用微型信标准确跟踪卫星。3D 打印防护罩:一种轻质、耐用的防护罩,可保护卫星免受微流星体撞击。EPASS:一种安全放电报废卫星电池的系统。超敏捷推进:水基推进系统使小型卫星能够执行精确的防撞操作。RFID 标签:一种从地球快速识别卫星的技术。除了技术进步之外,T4SC 还促进公共和私人太空参与者之间的合作,组织年度研讨会以应对太空交通管理和环境保护方面的共同挑战。总之,CNES 的 T4SC 计划在促进新法国太空法规的应用方面发挥了重要作用。通过创新技术、实用工具和协作努力,T4SC 为更安全、更可持续和更负责任的法国太空部门做出了贡献。
观测近地环境中的尘埃和碎片是一个具有巨大商业和科学意义的领域,对于最大限度地延长卫星的运行和商业生命周期以及降低日益增多的低地球轨道 (LEO) 宇航员的风险至关重要。为此,监测和评估粒子通量对于航天工业和依赖轨道基础设施数据产品/服务的更广泛的社会经济利益至关重要。我们设计了一种被动式太空尘埃探测器来调查低地球轨道的尘埃环境——轨道尘埃撞击实验 (ODIE)。ODIE 设计用于在低地球轨道部署约 1 年,然后返回地球分析尘埃颗粒产生的撞击特征。该设计强调能够区分与人类太空活动有关的轨道碎片 (OD) 和自然产生的毫米到亚毫米级微流星体 (MM) 群。 ODIE 由多个 Kapton 箔组成,这些箔显示出巨大潜力,可以有效保存撞击粒子的尺寸和化学细节,残留物化学可用于解释来源(OD 与 MM)。LEO 是一个恶劣的环境——原子氧的强烈腐蚀作用会损坏 Kapton 箔——需要使用保护涂层。Kapton 的常见涂层(例如 Al、SiO 2 等)对于后续分析和解释 OD 与 MM 的来源存在问题,因为它们是 MM 或 OD 的常见元素成分,或者 X 射线发射峰与用于区分 MM 与 OD 的元素的峰重叠。因此,我们建议使用钯涂层作为此应用的替代品。在这里,我们报告了钯作为 Kapton 基被动式粉尘探测器的保护涂层在暴露于原子氧和撞击时的性能。当受到撞击时,我们观察到较厚的涂层会受到影响
太空探索的主要挑战之一是妥善保护宇航员免受太空环境的危害。因此,宇航服是为了在舱外活动期间保护机组人员而设计的,但它们目前无法妥善承受微流星体和轨道碎片 (MMOD) 等撞击造成的损坏,如果被刺破,它们会减压和坍塌,造成灾难性的后果。在这种情况下,将自修复材料整合到宇航服中的可能性引起了科学界的关注,因为它可以实现自主损伤修复,从而提高安全性和使用寿命。然而,太空环境对这些材料的影响仍有待确定,并可能导致其整体性能显著下降。本文介绍的研究重点是应用于宇航服的第一个例子,分析了一组候选自修复聚合物在暴露于模拟太空辐射之前和之后的修复性能。在未辐照的情况下,还对双层膜和以这些聚合物为基质的纳米复合材料进行了比较。本研究还旨在通过将自修复材料的标准表征(例如:划痕、冲击和穿刺测试)与空间辐射对其影响的评估相结合,填补这两个方面的空白。了解辐射是否以及如何影响损伤恢复性能,实际上是确定给定的自修复材料是否真的可以用于太空应用的基础。通过穿刺损伤后的现场流速测量来评估自修复响应。收集最大和最小流速、它们之间的时间以及穿刺后 3 分钟内损失的空气量作为修复性能参数。对于纯材料,然后在伽马射线辐照样品上重复相同的测试,以研究暴露于模拟空间辐射后自修复性能的变化。结果表明,粘性响应较低的系统的修复性能较高,辐照后修复性能会降低。因此,需要进一步分析空间环境对所呈现材料的影响。 NASA HZETRN2015(高 Z 和能量传输,2015 版)软件也用于模拟舱外活动期间银河宇宙射线对航天服的作用。将经典的航天服多层与将标准内胆替换为每种分析材料层的配置进行比较,以确定最有希望的候选者,并确定添加纳米填料是否会显着提高屏蔽能力。