• IGRA(干扰素伽玛释放试验)血液测试(Quantiferon-Gold 或 T-Spot)或(2)步结核病皮试 • IGRA 血液测试是首选,因为只需去实验室抽血 1 次。 • (2) 步结核病皮试包含 2 个不同的结核病皮试,间隔 1-3 周完成。结核病测试由医疗保健提供者 (HCP) 进行,然后在 48-72 小时后读取。这需要 4 次单独去诊所进行测试和读取。 • 这是一项年度要求。一旦您进行了基线 IGRA 血液测试或(2)步结核病皮试,您可能只需要每年完成(1)步结核病皮试 - 前提是该测试在前一年测试到期之前完成。IGRA 测试(Quantiferon-Gold 或 T-Spot)也可以满足年度要求。
零知识范围证明(ZKRP)允许供奉献者说服验证者,秘密值在给定的间隔中。ZKRP有许多应用程序:从匿名凭证和拍卖到加密货币的机密交易。同时,文献中存在众多ZKRP结构,每个构建都有自己的权衡。在这项工作中,我们将围绕ZKRP的知识系统化。我们根据基础建筑技术创建了现有构造的分类,并总结了它们的属性。我们在属性和效率水平方面提供了方案之间的比较,并构建了一个指南,以帮助选择适当的ZKRP来满足不同的应用要求。最后,我们讨论了许多有趣的开放研究问题。
细胞模仿是多室的系统,可再现自然细胞的结构和功能。它们代表着迈向智能,自动和模块化寿命系统的重要一步。[1]可以量身定制细胞模仿,以有效地执行多种生化任务,并且可以设计用于与天然细胞的接口,从而弥合材料科学与生物学之间的差距。[2]基本的细胞模拟设计由一个主要的室(例如聚合物或脂质囊泡)组成,该室包含了各种结构和功能成分,包括子组门,细胞骨架,核酸,质子酸,蛋白质,蛋白质和酶。然而,随着组件的复杂性的增加,一个主要的障碍物成为复制真核细胞中发现的多门特征的能力,同时保持对
跨度程序是量子计算的重要模型,因为它们与量子查询和空间复杂性的对应关系。虽然从SPAN程序获得的量子算法的查询复杂性是充分理解的,但通常不清楚如何以时间效率的方式实现某些独立的操作。在这项工作中,我们证明了量子时间复杂性的类似连接。,我们展示了如何将F对于时间复杂性t t的足够结构结构的量子算法转换为f的跨度程序,从而将其汇编回到f的量子算法中,并使用时间复杂性e O(t)。这表明,对于具有时间效率实现的算法衍生的跨度程序,我们可以在实现跨度程序时保留时间效率,这意味着SPAN程序捕获时间,查询和空间复杂性,并且是量子算法的完整模型。能够以保持时间复杂性的方式将量子算法转换为跨度程序的一个实际优势是,跨度程序构成非常好。我们通过通过跨度程序组成或功能来改善Ambainis的可变时间量子搜索结果来证明这一点。
图3蒸发含有不同组合物的无柄液滴后获得的沉积模式。(a)液体的pH值。经许可进行调整。85版权所有2010,美国化学学会。(b)液滴的初始接触角。经许可复制。86版权所有2016,施普林格。(c)含有多物种纳米颗粒上不同底物上的梗液液滴。经许可复制。87版权所有2017,Elsevier。 (d)粒度和浓度的组合。 经许可进行调整。 88版权所有2019,Elsevier。87版权所有2017,Elsevier。(d)粒度和浓度的组合。经许可进行调整。88版权所有2019,Elsevier。88版权所有2019,Elsevier。
Tianyu 等 [24] 报道了一种基于金属液滴的毫米级热开 关 , 如图 7(a) 所示 , 热开关填充热导率相对较高的液
摘要 宽温度范围内液滴可控操控在微电子散热、喷墨打印、高温微流控系统等领域有着广阔的应用前景。然而,利用工业上常用的方法构建可控液滴操控平台仍然是一个巨大的挑战。流行的液滴控制方法高度依赖于外界能量输入,对液滴运动行为和操控环境(如距离、速度、方向和宽温度范围)的可控性相对较差。本文报道了一种简便易行、工业适用的制备Al超疏水(S-phobic)表面的方法,该表面能够在宽温度范围内控制液滴的弹跳、蒸发和传输。并进行了系统的机理研究。采用电化学掩模刻蚀和微铣削复合工艺在Al基底上制备了极润湿性表面。为了研究蒸发过程和热耦合特性,进行了宽温度范围内液滴的受控蒸发和受控弹跳。基于液滴在极端润湿性表面的蒸发调控和弹跳机理,利用拉普拉斯压力梯度和温度梯度,实现了在较宽温度范围内合流、分流、抗重力输运的液滴受控输运,为新型药物候选物、水收集等一系列应用提供了潜在的平台。
预期使用Gen III Microplate™测试面板使用94种生化测试提供了标准化的微方法,以剖面并识别革兰氏阴性和革兰氏阴性细菌的广泛范围。生物学的微生物识别系统软件(例如Omnilog®数据收集)用于从Gen III微板岩中的表型模式中鉴定细菌。描述生物Gen III微镀酸盐分析了94个表型测试中的微生物:71个碳源利用分析(图1,列1-9)和23种化学敏感性测定(图1,列,10-12列)。测试面板提供了微生物的“表型指纹”,可用于在物种水平上识别它。所有必要的营养物质和生化物都被预填充并干燥成96孔的微板井。四唑氧化还原染料用于比色表示碳源的利用或对抑制性化学物质的抗性。进行测试非常简单,如图2所示。要鉴定的分离物在琼脂培养基上生长,然后在推荐的细胞密度下悬浮在特殊的“胶凝”接种液3(IF)中。然后将细胞悬浮液接种到Gen III微板酸盐中,每孔100 µL,然后将微孔板孵育以使表型指纹形成。接种时,所有井都无色。在孵育过程中,在细胞可以利用碳源和/或生长的井中呼吸增加。增加的呼吸导致四唑氧化还原染料的减少,形成紫色。图1。负井仍然无色,负面对照井(A-1)也没有碳源。也有一个阳性对照井(A-10)用作10-12列中化学敏感性测定的参考。孵化后,将紫色井的表型指纹与生物学广泛的物种文库进行了比较。如果发现匹配,则将进行分离物的物种水平识别。在微板元素III微板TM