定量测量微电子设备中电场的定量测量由位于原位的STEM Victor Boureeau 1,Lucas Bruas 2,Matthew Bryan 2,Matthew Bryan 2,Jean-LucRouvière3和David David Cooper 2** 1* 1。电子显微镜跨学科中心,EPFL,洛桑,瑞士。2。大学。Grenoble Alpes,CEA,Leti,Grenoble,法国。3。大学。Grenoble Alpes,CEA,Irig-Mem,Grenoble,法国。*通讯作者:David.cooper@cea.fr纳米尺度上字段的定量映射对于了解设备的行为并提高其性能至关重要。从历史上看,这是通过过轴电子全息图执行的,因为该技术已经成熟并提供了可靠的定量测量[1]。近年来,硬件的改进使扫描传输电子显微镜(STEM)实验期间的衍射模式的记录成为可能,从而生成所谓的4D-STEM数据集。越来越多的数据处理方法与特定的采集设置相结合,导致了广泛的像素化词干技术[2]。在这里,我们探讨了以像素化的茎构型进行的差异相位对比度(DPC)技术[3] [4]。它允许根据衍射平面中发射光束的强度位移对电场进行定量测量。我们将展示如何受显微镜和数据处理的配置影响类似DPC的像素化的茎测量值。结果将与电子全息图和仿真进行比较。样品在图1和图2中显示。1(c)。开始,我们将在掺杂的硅P -N结上进行工作,并以对称1 E 19 cm -3的浓度掺杂,在-1.3 V的反向偏置下进行检查。使用此样品,平均内部电位(组合电位)没有变化,偏置电压会增加内置电场。通过聚焦的离子束制备了连接的横截面,并在FEI Titan显微镜中使用Protochips Aduro 500样品支架附着在芯片上进行原位偏置实验,该实验在200 kV下运行。1(a,b),晶体厚度为390 nm,如收敛束电子衍射测量。使用二级离子质谱掺杂剂测量作为输入,用Silvaco软件对结中的电场进行建模。整个连接处的轮廓如图通过离轴电子全息图测量了偏置连接的电场,请参见图。1(c,d),并在除去非活动厚度后与建模很好地一致[1]。反向偏见的P-N连接的电场的大小约为0.65 mV.cm -1,耗尽宽度约为60 nm。已经研究了不同的像素化的茎构和处理方法,以测量连接处的电场。当探针大小大于特征场变化长度时,导致射击梁内部强度重新分布时,使用了一种算法(COM)算法。当传输梁小于场变化并经历刚性变速时,使用模板匹配(TM)算法[5]。2(a)。电场图如图首先,使用低磁化(LM)茎构型,使用的一半收敛角为270 µRAD,相机长度为18 m。连接处的衍射图显示了传输梁边缘处强度的重新分布,因此使用COM加工,请参见图。2(e)和图中绘制了一个轮廓。2(i)。连接点的耗尽宽度似乎约为100 nm,这表明由于LM茎配置的探针大小较大,
免责声明 本出版物及其中的材料均按“原样”提供。Husk Power Systems 已采取一切合理的预防措施来验证材料的可靠性。但是,Husk Power Systems 及其任何官员、代理、数据提供商或其他第三方内容提供商均不提供任何明示或暗示的保证,并且对使用出版物的任何后果不承担任何责任。本文中包含的信息不一定代表 Husk Power Systems 所有成员的观点。提及特定公司或某些项目或产品并不意味着 Husk Power Systems 认可或推荐它们优于未提及的其他类似性质的产品。本文使用的名称和材料的呈现方式并不意味着 Husk Power Systems 对任何地区、国家、领土、城市或地区或其当局的法律地位或边界或边界的划定发表任何意见。
监管公告本公告乃上海复旦微电子集团股份有限公司(「本公司」)根据香港联合交易所有限公司海外证券上市规则第13.10B条的规定刊发。兹载列公司于上海证券交易所网站刊发的《2022年度内部控制审计报告》,参见。
本文介绍了一种独立直流微电网中与存储设备共享的能源管理方法。管理的目的是满足能源需求,同时保证生产/消耗平衡,并具有良好的直流母线电压调节和稳定性。该能源管理方法的另一个优点在于通过计算公共直流母线上的有效功率来考虑静态转换器中的损耗。所提出的控制策略利用非线性控制,结合模糊逻辑控制来从光伏和风能源中提取最大功率,同时使用滑模控制来控制存储功率转换器。公共直流母线功率流的控制使母线电压具有良好的稳定性,在期望值附近的偏差很小,从而限制了电池应力,因为低频电流分量被发送到电池,而高频功率分量被导向超级电容器。仿真结果证明了所提出的能源管理和控制策略的有效性。
信息以汇总格式呈现,而操作(现场经验、可靠性演示和设备检查)和寿命测试数据则以详细格式呈现。数字详细数据出版物的数据由可靠性分析中心从政府和行业报告中收集、提炼和缩减,以便提供客观信息以供一般使用。
• 微电子技术 - 它是一种集成电路技术,能够在面积为 100 平方毫米的一小块硅片(称为硅片)上生产数百万个元件。 • 集成电路的主要例子是微处理器,它可以在单个半导体芯片上执行算术、逻辑和存储功能
摘要微电子行业在全国范围内雇用约18万名工人。在半导体组件和集成电路的制造中使用了约95,000个;大约有60,000名用于电容器,电阻和冷凝器的生产;余额生产其他电子产品。这个高科技行业的流行印象是,穿着白色西服的员工在干净,明亮的工作场所穿着白色西装。尽管在许多情况下是准确的,但该行业中的许多高科技工人风险可能会暴露于各种各样的危险物质。科学研究已经确定了该行业内部的许多危险状况和最高的职业疾病率。
为了最大程度地减少全球变暖和温室效应的影响,可以广泛研究基于可再生能源的微电网。在本文中,已经介绍了DC微电网中的PV,基于风能的可再生能源系统和电池,基于超级电容器的储能系统。使用神经网络和最佳扭矩控制获得了PV和风的最大功率点。非线性超级滑动模式控制器已为功率来源提供。使用Lyapunov稳定性分析验证了框架的全局渐近稳定性。对于负载产生平衡,已经设计了基于模糊逻辑的能量管理系统,并使用MATLAB/SIMULINKR⃝(2019a)模拟了控制器,并比较了不同的控制器。对于实验验证,已进行了控制器硬件 - 循环实验,以验证设计系统的性能。©2021 ISA。由Elsevier Ltd.发布的所有权利保留。