单击以查看价格、库存、交付和生命周期信息:LQ101K1LY05 LQ101K1LY05 LQ101K1LY05 LQ121K1LW56 LQ121K1LW56 LQ121K1LW56 LQ150X1LW12B LQ150X1LW12B LQ190N1LW01 LQ190N1LW01 LQ190N1LW01 LQ190N1LW01 LQ035Q3DG03 LQ035Q3DG03 LQ035Q3DG06 LQ231U1LW32 LQ231U1LW32 LQ070Y3DG1A LQ070Y3DG1A LQ043T1DG18 LQ043T1DG18 LQ070Y3LG04 LQ035Q3DG01 LQ035Q3DG01 LQ035Q3DG01 LQ035Q3DG01 LQ035Q3DG01 3.5 LQ035Q3DG01C LQ035Q3DG01C LQ121S1LG79 LM49370RLNOPB LM4935RLCT-ND LM386N1NOPB LM386N-5/NOPB LM386N-1/NOPB (DIP) LM386-N-1 LM386NB LM386N-3 NOPB LM5008SD-EVAL
摘要:为了应对气候变化和全球平均气温上升导致的能源转型,光伏 (PV) 转换似乎是阳光充足地区的一种有前途的技术。然而,光伏发电与天气条件和昼夜循环直接相关,这使其具有间歇性和随机性。因此,将其与储能系统 (ESS) 相结合以确保非互联微电网的长期能源供应是有意义的。在所有技术解决方案中,可再生能源生产的电解氢似乎是一个有趣的候选者。在此背景下,本文提出了一种专用于微电网中氢存储集成的控制策略,以更好地利用光伏发电。目标是根据系统状态和光伏生产间歇性,优化质子交换膜燃料电池 (FC)、碱性电解器 (El)、锂离子电池储能系统 (BESS) 和光伏的微电网管理。首先,开发基于分布式显式模型预测控制 (DeMPC) 的控制策略,以定义 FC、EL 和电池的电流参考。其次,在仿真中验证控制策略的性能,并在电源硬件在环测试台上确认。
w1 冬季 ✓ 50 0.86 w2 冬季 ✓ 100 0.86 w3 冬季 ✓ 50 0.86 w4 冬季 ✓ 100 0.86 w5 春季 ✓ 50 0.86 w6 春季 ✓ 100 0.86 w7 春季 ✓ 50 0.86 w8 春季 ✓ 100 0.86 w9 夏季 ✓ 50 0.86 w10 夏季 ✓ 100 0.86 w11 夏季 ✓ 50 0.86 w12 夏季 ✓ 100 0.86 w13 秋季 ✓ 50 0.86 w14 秋季 ✓ 100 0.86 w15 秋季 ✓ 50 0.86 w16 秋季 ✓ 100 0.86 w17 冬季 ✓ 50 1.72 w18 春季✓ 100 1.72 w19 夏季 ✓ 50 1.72 w20 秋季 ✓ 100 1.72 w21 冬季 ✓ 50 1.72 w22 春季 ✓ 100 1.72 w23 夏季 ✓ 50 1.72 w24 秋季 ✓ 100 1.72 w25 冬季 ✓ 100 1.72 w26 春季 ✓ 50 1.72 w27 夏季 ✓ 100 1.72 w28 秋季 ✓ 50 1.72 w29 冬季 ✓ 100 1.72 w30 春季 ✓ 50 1.72 w31 夏季 ✓ 100 1.72 w32 秋季 ✓ 50 1.72
摘要:由于气候变化挑战和环境法规的演变,港口越来越重视能源效率和低碳能源系统。因此,必须对港口的众多系统进行技术突破,例如港口起重机、海港车辆或停泊船只的电源。这些方面可能需要在港口地区建立微电网。微电网在大陆和岛屿上得到了广泛的发展,主要用于国内负荷。然而,这些在港口地区仍然很少见。它们在这些地方的发展面临着许多挑战,例如高功率要求、对各种负载的监控和管理、能源政策框架等。此外,建立微电网涉及规模和能源管理的研究,以避免成本过高并验证负载要求。本文提供了与海港地区微电网发展相关的文献调查。首先,列出了港口微电网中的主要组件,然后对涉及规模和能源管理的研究进行了回顾。最后,从本次调查中列出了创新概念和障碍,并对全球海港微电网发展进行了最新回顾。
决定合同prot.n.<894748 of 12/12/2024,用于作业,按照艺术的公开程序超过社区阈值。立法法令的71。 36/2023在国家恢复和弹性计划(PNRR)M4C2-I2.1-任务4“教育,培训和研究”的供应,安装和操作中用于光谱和成像拉曼和共聚焦光致发光的供应,安装和运行欧洲共同利益的项目)“ _绿色ipcei-cup B63C2200239000项目的微技术项目;立法法令的71。 36/2023在国家恢复和弹性计划(PNRR)M4C2-I2.1-任务4“教育,培训和研究”的供应,安装和操作中用于光谱和成像拉曼和共聚焦光致发光的供应,安装和运行欧洲共同利益的项目)“ _绿色ipcei-cup B63C2200239000项目的微技术项目;
摘要 — 向可持续能源系统的过渡凸显了微电网中可再生能源高效定型的迫切需求。特别是,设计光伏 (PV) 和电池系统以满足住宅负荷是一项挑战,因为需要在成本、可靠性和环境影响之间进行权衡。虽然之前的研究已经采用了动态规划和启发式技术来确定微电网的大小,但这些方法往往无法平衡计算效率和准确性。在这项工作中,我们提出了 BOOST,即电池-太阳能序数优化定型技术,这是一种用于优化微电网中 PV 和电池组件定型的新颖框架。序数优化能够以计算效率评估潜在设计,同时通过对解决方案进行稳健的排序来保持准确性。为了确定系统在任何给定时间的最佳运行,我们引入了一种混合整数线性规划 (MILP) 方法,该方法比常用的动态规划方法成本更低。我们的数值实验表明,所提出的框架可确定最佳设计,实现低至 8.84 ¢/kWh 的平准化能源成本 (LCOE),凸显了其在经济高效的微电网设计中的潜力。我们的工作意义重大:BOOST 提供了一种可扩展且准确的方法,可将可再生能源整合到住宅微电网中,同时实现经济和环境目标。索引术语 — 微电网、序数优化、混合整数线性规划、动态规划
微电动机械系统(MEMS)是与用于在微观设备上制造纳米和芯片系统的技术有关的跨学科领域。MEMS设备和系统嵌入了电气,机械,化学和混合机制,以实现各种应用的设备和系统,例如物理传感器,生物医学系统和复杂的多功能纳米微型系统。mems结合了许多学科的专业知识,包括但不限于工程,生物学,化学,信息学,医学和物理学的所有领域。典型的MEMS设备结合感应,处理和/或致动功能。它们通常结合两个或多个或多个电气,机械,机械,生物学,磁性,光学,光学,光学奇质的单个Micmorochip。
摘要:从材料和功能耐久性的角度研究并报告了热老化、疲劳和热机械老化对柔性微电子 12 器件的影响。研究了封装材料和基板的降解 13 机制。分析了封装材料和基板 14 材料的性能变化,并确定了它们在柔性器件失效机制中的关系。15 在热老化条件下,树脂的硬化与测试载体中的分层有关,这会导致功能性电气性能的丧失。降解是由于在 120°C 的热氧化过程中发生了突出的交联 17 反应。疲劳 18 应力测试后,树脂会发生适度硬化。虽然后者的硬化同样与交联反应有关,但在这里,硬化 19 不能由树脂的热降解引起,因为所用的应力频率很低。20 相反,热机械耦合发生在两个阶段。在温和条件下,降解 21 机制对应于热老化和疲劳过程的综合效应。在更严酷的热机械条件下,断链机制变得更加有效,并导致树脂软化 23。24
Design Methods of Signal Processing Systems: • Optimization of signal processing algorithms • Compilers and tools for signal processing systems • Algorithm-to-architecture transformation • Dataflow-based design methodologies Software Implementation of Signal Processing Systems: • Software on programmable digital signal processors • Application-specific instruction-set processor (ASIP) architec- tures and systems • SIMD, VLIW, and multi-core CPU architectures • GPU-based massively parallel implementation Hardware Implementation of Signal Processing Sys- tems: • Low power/complexity signal processing circuits & applica- tions • FPGA and reconfigurable architecture-based systems • System-on-chip and network-on-chip • VLSI for sensor network and RF identification systems • Quantum signal processing • Neuromorphic computing
HAL 是一个多学科开放存取档案库,用于存放和传播科学研究文献,无论这些文献是否已出版。这些文献可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。