为确定不受控制的长期休眠存储对塑料封装微电路的影响,应用物理实验室评估了来自多家制造商和采用多家技术的 92 个商用样品,一些样品已有 28 年历史。假设是,如果旧部件在经过 20 或 30 年不受控制的长期休眠存储后没有性能下降,那么目前性能优越得多的产品将在类似条件下存活类似时间。破坏性物理分析的结果表明,只有两个塑料封装微电路(均为 28 年)出现了腐蚀。无论使用年限如何,C 型扫描声学显微镜检查都发现大多数部件都有分层区域,这表明该技术可能不是筛查塑料封装微电路的好方法。未发现腐蚀和水分含量之间的直接关系。此外,发现氧等离子蚀刻是对塑料封装微电路进行破坏性物理分析的一种非常有效的方法。 (关键词:塑料封装微电路、海军航空、长期休眠存储。)
杜邦的印刷电子材料包括一系列导电银、碳和氯化银油墨,所有这些油墨的配方都力求在性能和成本之间取得适当的平衡。通过将这些导体与其他印刷电子元件(包括介电油墨)相结合,我们能够形成导电迹线、电容器和电阻器。对于触摸屏和智能玻璃,杜邦细线高分辨率银浆适用于网格线和母线,对 ITO 具有良好的附着力,并且接触电阻低。这种添加剂技术简化了触摸屏和功能性玻璃(如自调光窗)的生产。
PATRIOT(相控阵跟踪拦截目标)系统在开始时没有使用任何 PEM,因为高运行率和备件及导弹的长期储存需要较高的平均故障间隔时间 (MTBF)。增长计划和采购精简(即成本)要求“重新审视”PEM 的使用。目前的低运行率允许将 PEM 整合到地面设备中,但由于长时间处于休眠状态且运行时间短,因此无法整合到导弹中。目前,PATRIOT 系统部署在从炎热潮湿到凉爽潮湿的各种环境中。由于 PATRIOT 系统使用外部空气来冷却设备,因此 PEM 会“呼吸”而 HSM 不会“呼吸”这一事实对于操作和存储环境来说是一个问题,尤其是因为缺乏普通、干包装和氮气存储的 PEM 以及组件上的保形涂层 PEM 的存储数据。随着我们进入 21 世纪,可以预见 PEM 的使用将会增加,届时性能要求而不是技术数据包 (TDP) 将决定最终项目。
o Shri Agarwal 是 NASA 的 NEPAG 协调员。NEPAG 代表 NASA 电子零件保证小组,是一家从事电子零件保证的实体,专注于标准开发/维护。其中一些活动包括与其他航天机构进行每周电话会议;为国防后勤局提供技术专业知识,以审核零件供应链,成为空间微电路资格认证活动的一部分;与航天界(零件制造商和零件用户)合作制定新标准,例如 Y 级、P 级;以及其他相关活动。
为确定不受控制的长期休眠存储对塑料封装微电路的影响,应用物理实验室评估了来自多家制造商和采用多家技术的 92 个商用样品,一些样品已有 28 年历史。假设是,如果旧部件在经过 20 或 30 年不受控制的长期休眠存储后没有性能下降,那么目前性能优越得多的产品将在类似条件下存活类似时间。破坏性物理分析的结果表明,只有两个塑料封装微电路(均为 28 年)出现了腐蚀。无论使用年限如何,C 型扫描声学显微镜检查都发现大多数部件都有分层区域,这表明该技术可能不是筛查塑料封装微电路的好方法。未发现腐蚀和水分含量之间的直接关系。此外,发现氧等离子蚀刻是对塑料封装微电路进行破坏性物理分析的一种非常有效的方法。 (关键词:塑料封装微电路、海军航空、长期休眠存储。)
最常用的塑料材料是环氧基树脂,制造商根据其特性以及在测试和可靠性鉴定下的表现,使用多种配方。一个重要特性是离子纯度,这对设备可靠性很重要。添加剂吸气剂用于去除移动离子并提供高抗拉强度以消除爆米花。制造商根据多种特性对环氧模塑料 (EMC) 进行评级和选择。尽管不同制造商的目标通常相同(高设备/封装可靠性和性能),但由于芯片设计、半导体工艺、组装设备、可靠性测试和鉴定方法及结果各不相同,因此使用的 EMC 通常不同。
提议由混合微电路行业代表、海军 MicroCIM 计划成员和 IGES/PDES 电气应用委员会进行测试,以满足广大混合微电路应用用户的需求。此 AP 将接受测试并
1) PEM 不适用于某些应用。在使用 PEM 之前,应对每种应用进行分析。特定的 PEM 环境问题如下:a) 排气 • 排气材料会降低传感器的性能 • NASA 排气规范: - 最大总质量损失 (TML) 为 1% - 最大收集挥发性可冷凝材料 (CVCM) 为 0.1% • 使用 NASA 发布的数据库;NASA 参考出版物 1124,修订版 3,“用于选择航天器材料的排气数据” • 环氧酚醛树脂作为一个整体通常符合 NASA 排气要求,但各种成型化合物配方含有专有添加剂,应进行检查。b) 温度限制 • PEM 的工作温度范围通常较窄(商用设备为 0°C 至 70°C)。操作或存储时的温度限制可能会成为问题。 • 当军用温度范围(-55°C 至 125°C)的部件不可用时,请选择工业温度范围(-40°C 至 85°C)的部件,因为大多数供应商都提供此范围内的部件。 • 使用供应商的数据或实际测试数据来确定部件在超出制造商指定的工作温度范围的扩展温度下满足性能参数的能力。 c) 热循环 • 热循环会引起周期性机械应力,最终导致模塑料分层和开裂。 从而产生快速水分和化学物质侵入的途径。 d) 辐射 • 宇宙和被困
摘要:当前地缘政治形势和国内电子行业面临的进口替代挑战要求制造能够在极端环境条件下,尤其是高温条件下可靠运行的设备。在开发必须在超出通常值的温度范围内可靠运行的电子设备时,开发人员应依靠主动或被动冷却。在某些情况下,冷却是不切实际或不可能的。在某些情况下,如果设备在特殊温度范围内运行可以降低设备成本或提高其可靠性,那么它就非常有意义。在这种情况下,需要解决许多复杂的问题,包括半导体制造技术、设计和测试方法。本文探讨了制造国内石油天然气和航空航天工业长期发展所必需的高温电子元件的问题。智能井的进口替代技术的创造可以大大降低设备成本。在航空航天工业中,这个问题更加现实:用于太空的“西方”计算设备的成本高达 50 万欧元,在制裁条件下,可能无法购买,而类似的进口替代国产设备则便宜 10 倍。飞往近太空和远太空的飞行除了需要高抗辐射性外,还需要所有航天器系统在宽温度范围内的可靠性。本文介绍了设计在高达 +125°C 的温度下运行的主要模拟芯片的技术特性。
生长抑素表达 (SST) 中间神经元的皮质抑制减少与难治性抑郁症密切相关。然而,SST 中间神经元抑制减少对微电路活动的影响是否具有可在脑电图 (EEG) 信号中检测到的特征仍不清楚。我们使用具有正常(健康)或减少的 SST 中间神经元抑制(抑郁)的人类皮质微电路的详细模型模拟了静息状态活动和脑电图。健康微电路模型显示出静息状态脑电图的关键特征,而抑郁微电路表现出增加的 theta、alpha 和低 beta 功率(4 – 15 Hz)。抑郁症的变化涉及非周期性宽带和周期性 theta 和低 beta 成分的组合。然后,我们通过展示它们与减少的 parvalbumin 表达 (PV) 中间神经元抑制相对应的脑电图特征不同,证明了 SST 中间神经元抑制减少的脑电图特征的特异性。因此,我们的研究将 SST 中间神经元抑制水平与从详细的人类微电路模拟的 EEG 中的不同特征联系起来,这可以帮助更好地使用 EEG 识别抑郁症的机械亚型,并以非侵入性方式监测皮质抑制的调节。 通讯作者:Etay Hay 博士 Krembil 神经信息学中心,成瘾和心理健康中心 250 College St, Toronto, Ontario, M5T 1R8 电子邮件:etay.hay@camh.ca