摘要。在半个多世纪的时间里,科学家开发了数学模型来了解人心的行为。今天,我们有数十种心脏组织模型可供选择,但是选择最佳模型仅限于专家专业人士,容易偏向用户偏见,并且容易受到人为错误的影响。在这里,我们将人类从循环中取出并自动化模型发现过程。朝向这个目标,我们建立了一种新型不可压缩的正性构型神经网络,以同时发现模型和参数,可以最好地解释人类心脏组织。值得注意的是,我们的网络具有32个内部术语,8个各向同性和24各向异性,并且完全自主选择了最佳模型,其中包括超过40亿可能的术语组合。我们证明我们可以通过三轴剪切和双轴扩展测试成功训练网络,并系统地将参数向量稀疏为L 1-正则化。引人注目的是,我们坚强地发现了一个四个期模型,该模型在第二个不变I 2中具有二次术语,而在第四和第八个不变的I 4F,I 4N和I 8F中,指数二次术语。重要的是,我们发现的模型是可以通过设计来解释的,并且具有具有良好固定的物理单位的参数。我们表明,它的表现优于流行的现有心肌模型,并且可以很好地概括,从均质实验室测试到异质的整个心脏模拟。这是通过直接将发现的网络权重作为输入的新的通用材料子例程来实现的。自动化模型发现的过程有可能使心脏建模,扩大科学发现的参与以及加速心血管疾病创新治疗的发展。
(未通过同行评审认证)是作者/资助者。保留所有权利。未经许可就不允许重复使用。此预印本版的版权持有人于2024年2月22日发布。 https://doi.org/10.1101/2024.02.20.581294 doi:Biorxiv Preprint
为了分析有丝分裂过程中细胞结构的分析,需要纳米分辨率来可视化纺锤体中微管的组织。在这里,我们提出了一种详细的方案,可用于在培养物中生长的细胞中整个有丝分裂纺锤体的3D重建。为此,我们将富含有丝分裂阶段的哺乳动物细胞附着在蓝宝石盘上。我们的协议进一步涉及通过高压冻结,冻结固定和树脂嵌入的冷冻污染。然后,我们使用荧光光学显微镜在树脂包裹的样品中选择有丝分裂细胞。接下来是大规模电子断层扫描,以重建3D中所选的有丝分裂纺锤体。然后,生成和缝合的电子断层图用于半自动分段微管,以进行纺锤体组织的随后定量分析。因此,通过提供详细的相关光和电子显微镜(CLEM)方法,我们为细胞生物学家提供了一种工具集来简化纺锤体微管的3D可视化和分析(http://kiewisz.shinyapps.io/asga)。此外,我们指的是一个最近启动的平台,该平台允许交互式显示3D重建有丝分裂纺锤体(https://cfci.shinyapps.io/asga_3dviewer/)。
耐药性的重要后果是,癌细胞对治疗剂不敏感并摆脱凋亡[4]。在抗药性细胞中据报道了凋亡基因(例如p53,Bcl-2和Bax)和信号转导途径的变化[5]。研究报告说,BCL-2与BCL-XL和MCL-1一起调节对化疗的耐药性,并降低卵巢癌患者的存活率[6,7]。有不同的癌症亚组,其中这些抗凋亡蛋白的至少一个家庭成员过表达,并且在固有的耐药性癌症中更常见[8]。当前,可用的抗癌疗法包含基于靶向癌细胞DNA完整性和/或复制的治疗方法,这间接触发了肿瘤细胞中的凋亡[9,10]。发现新化合物及其潜在的细胞毒性和凋亡作用的确定对于提高治疗率很重要。
摘要:小管蛋白脱乙酰基酶SIRTUIN 2(SIRT2)和组蛋白脱乙酰基酶6(HDAC6)的失调与癌症和神经退行性的发病机理有关,从而使这两种酶有望实现药物干预的靶标。在此,我们报告了第一类双SIRT2/ HDAC6抑制剂的设计,合成和生物学表征,作为用于双重抑制微管蛋白脱乙酰基化的分子工具。使用生化的体外测定和基于细胞的方法进行目标参与,我们将MZ325(33)确定为两种靶酶的有效抑制剂。通过SIRT2和HDAC6的X射线晶体结构在复合物中与构件为33的X射线晶体结构进一步证实。与单偶联的SIRT2和HDAC6抑制剂相比,在卵巢癌细胞中,有33个引起了对细胞活力的增强对细胞活力的影响。因此,我们的双SIRT2/HDAC6抑制剂是研究双重抑制微管蛋白脱乙酰基化的后果和治疗潜力的重要新工具。■简介
为了分析有丝分裂过程中细胞结构的分析,需要纳米分辨率来可视化纺锤体中微管的组织。在这里,我们提出了一种详细的方案,可用于在培养物中生长的细胞中整个有丝分裂纺锤体的3D重建。为此,我们将富含有丝分裂阶段的哺乳动物细胞附着在蓝宝石盘上。我们的协议进一步涉及通过高压冻结,冻结固定和树脂嵌入的冷冻污染。然后,我们使用荧光光学显微镜在树脂包裹的样品中选择有丝分裂细胞。接下来是大规模电子断层扫描,以重建3D中所选的有丝分裂纺锤体。然后,生成和缝合的电子断层图用于半自动分段微管,以进行纺锤体组织的随后定量分析。因此,通过提供详细的相关光和电子显微镜(CLEM)方法,我们为细胞生物学家提供了一种工具集来简化纺锤体微管的3D可视化和分析(http://kiewisz.shinyapps.io/asga)。此外,我们指的是一个最近启动的平台,该平台允许交互式显示3D重建有丝分裂纺锤体(https://cfci.shinyapps.io/asga_3dviewer/)。
科学研究表明,微管蛋白在人体不同部位的肿瘤中都有表达。III 类 b 型微管蛋白 (TUB b 3 ) 是与晚期肿瘤相关的最主要的微管蛋白。38 蛋白质研究表明,微管蛋白在细胞行为中起着至关重要的作用,是微管的结构单位。着丝粒可以作为癌症进展的指标进行监测;这种结构是一种动态元素,可组织负责细胞分裂的机制。着丝粒由一对中心粒组成,纺锤体和星状微管由此起源。癌细胞通常具有额外的着丝粒和染色体不稳定性。着丝粒的这些数值和结构变化是人类癌症和染色体疾病的有用指标和标志。人体组织含有各种
细胞间粘附丧失,导致紧密连接溶解、顶端-基底极性破坏和细胞骨架结构重组;这些影响与侵袭性或转移表型有关 (Vu and Datta, 2017)。因此,我们分析了 stPEPC 诱导的有丝分裂细胞死亡是否与 CRC 转移进展紊乱有关。我们的数据显示,与 24 小时后用载体处理的 CRC 细胞相比,用 stPEPC 治疗可增加上皮标志物的表达水平,包括 E-cadherin 和 occludin (图 7A),并减少迁移 (图 7B)。此外,与用载体处理的 CRC 细胞相比,stPEPC 显着降低了 HT29 和 HCT116 细胞通过 Matrigel 包被的 Transwell 聚碳酸酯滤膜的侵袭能力
保留所有权利。未经许可就不允许重复使用。(未经同行评审证明)是作者/资助者,他已授予Medrxiv的许可证,以永久显示预印本。该版本的版权所有此版本发布于2023年5月28日。 https://doi.org/10.1101/2023.05.23.233290232 doi:medrxiv preprint
抽象的外臂动力蛋白(OAD)是纤毛跳动的主要力发生器。尽管OAD损失是人类原发性睫状运动障碍的最常见原因,但OAD的对接机制在纤毛双线微管上(DMT)仍然难以捉摸脊椎动物。在这里,我们使用斑马鱼精子和冷冻电子层析摄影术分析了脊椎动物OAD-DC(停靠复合物)的五个组成部分中的Calaxin/efcab1和ARMC4的功能。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。 详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。 我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。ARMC4的突变导致OAD完全丢失,而卡拉辛的突变仅导致OAD的部分损失。详细的结构分析表明,卡拉辛 - / - OAD通过Calaxin以外的其他DC组件将DMT束缚在DMT上,并且重组卡拉辛可以自主挽救缺陷的DC结构和OAD的不稳定性。我们的数据证明了Calaxin和ARMC4在OAD-DMT相互作用中的离散作用,这表明OAD对接在脊椎动物中DMT上的稳定过程。