摘要:氮化铝 (AlN) 是少数具有优异导热性的电绝缘材料之一,但高质量薄膜通常需要极高的沉积温度 (>1000°C)。对于密集或高功率集成电路中的热管理应用,重要的是在低温 (<500°C) 下沉积散热器,而不会影响底层电子设备。在这里,我们展示了通过低温 (<100°C) 溅射获得的 100 nm 至 1.7 μ m 厚的 AlN 薄膜,将其热性能与其晶粒尺寸和界面质量相关联,我们通过 X 射线衍射、透射 X 射线显微镜以及拉曼和俄歇光谱对其进行了分析。通过反应性 N 2 的分压控制沉积条件,我们实现了 ∼ 600 nm 薄膜热导率 ( ∼ 36 − 104 W m − 1 K − 1 ) 的 ∼ 3 × 变化,上限范围代表室温下此类薄膜厚度的最高值之一,尤其是在低于 100°C 的沉积温度下。还可以从热导率测量中估算出缺陷密度,从而深入了解 AlN 的热工程,可针对特定应用的散热或热限制进行优化。关键词:热导率、氮化铝、生产线后端、热传输、溅射沉积、低温、电力电子
本文概述了用于实现纳米、微米和宏观系统以及系统集成的最常见晶圆键合技术。首先,讨论了晶圆键合应用的一般方面。然后是对不同晶圆键合工艺的技术描述,因为不同的键合应用需要与工艺集成和应键合的晶圆上的实际表面层相关的不同工艺。最后,在概述表中显示了优点和缺点以及技术和应用方面,对所述键合工艺进行了系统化和详细的比较。本概述应有助于为晶圆级键合和其他应用选择最合适的工艺。
金属电极诱导的晶格应变会损害用电子或孔自旋运行的高级量子设备的功能。在这里,我们通过nanobeam扫描X射线di效果显微镜很好地研究了由埋入10 nm厚的SI / SI 0.66 GE 0.34量子孔的晶状体上的CMOS制造钛电极引起的变形。我们能够测量2-8×10-4范围内的锡电极诱导的应变张量成分的局部调制,并具有约60 nm的横向分辨率。我们评估这些应变流动在局部调制中反映在SI传导带的最小值大于2 MeV的电势中,该电池的最小值大于2 MeV,该调制带接近静电量子点的轨道能。我们观察到,在量子孔层的给定深度处应变调制的符号取决于电极的横向尺寸。由于我们的工作探讨了设备几何形状对应变诱导的能量景观的影响,因此它可以进一步优化缩放CMOS加工的量子设备的设计。
近来,人们对开发工作在短波红外 (SWIR) 波长 [1] 的单光子探测器的兴趣日益浓厚,SWIR 波长定义为工作在约 1000 nm 的 Si 能带边缘之外的波长。光检测和测距 (LIDAR) [2]、透过遮蔽物成像 [3] 和量子通信 [1] 等众多量子技术应用都需要在这些波长下具有这样的单光子灵敏度。例如,由于太阳背景辐射较低且激光安全人眼阈值较高,可通过转移到 SWIR 来改进 LIDAR 应用。在量子通信中,1310 nm 和 1550 nm 的低损耗光纤波长要求任何单光子探测器都能在这些波长下进行探测。虽然超导纳米线探测器 [4] 和 InGaAS/InP SPAD [5] 是现成的单光子探测技术,但 Ge-on-Si SPAD 具有降低后脉冲和提高单光子探测效率的潜力。 [6] 本研究在 260 nm 绝缘体上硅 (SOI) 晶片上制造了 Ge-on-Si SPAD,采用独立吸收、电荷和倍增层几何结构 (SACM) 和横向 Si 倍增层,采用完全兼容 CMOS 的工艺。利用这种几何结构,可以轻松实现与 Si 波导和光纤的集成 [7],从而实现其在量子通信应用中的潜力。Ge 选择性地生长在 SiO 2 沟槽内,与块状 Ge 生长相比,降低了穿线位错密度 (TDD)。研究了这些器件的暗电流特性,以及不同的 Ge 钝化技术对侧壁的影响。
微米级氧化镓薄膜中的定向载流子传输用于高性能深紫外光电探测 张文瑞 1,2 * 王伟 1 张金福 1 张谭 1 陈莉 1 王刘 1 张宇 3 曹彦伟 1 季莉 3 叶吉春 1,2 * 1 中国科学院宁波材料技术与工程研究所,浙江省能源光电子材料与器件工程研究中心,浙江 宁波 315201 2 甬江实验室,浙江 宁波 315201 3 复旦大学微电子学院专用集成电路与系统国家重点实验室,上海 200433 关键词:紫外光电探测器,宽禁带半导体,氧化镓,载流子传输,缺陷
摘要我们引入了独特的软标志操作,该操作利用了邮票屋顶塌陷引起的间隙,以选择性地去除AU上的烷烃 - 硫醇自组装单层(SAM),以生成表面图案,这些表面图案比原始弹性邮票上的结构小。使用化学升降光刻(CLL)过程中的千分尺尺度结构邮票实现的最小特征维度为5 nm。分子图案保留在邮票特征及其周围或铭文圆之间的差距中,遵循数学预测,可以通过更改邮票结构尺寸(包括高度,音高和形状)来调整它们的尺寸。这些生成的表面分子模式可以用作生物识别阵列,也可以将其转移到下方的Au层以进行金属结构创造。通过将CLL过程与此差距现象相结合,以前被认为是使用的柔软的属性属性,可用于在简单的草图中实现低于10 nm的特征。
了解氧化铝增强铝复合材料 (Al-A2O3) 的循环行为对于其在不同工业领域的进一步应用至关重要。本研究重点关注通过放电等离子烧结 (SPS) 方法和摩擦搅拌焊接 (FSW) 相结合生产的 Al-氧化铝纳米复合材料的循环行为。添加的氧化铝总含量为 10%,是纳米和微米粒子的组合,其比例因样品而异。使用光学显微镜 (OM)、扫描电子显微镜 (SEM) 和能量色散 X 射线光谱 (EDS) 表征 SPSed 样品的微观结构。表征了加工后的复合材料样品的微观结构并研究了其机械行为。微观结构研究表明,氧化铝的纳米粒子主要分布在晶粒边界和晶粒内部,而微米级粒子主要沉积在晶粒边界上。此外,还根据增强体尺寸和纳米粒子添加百分比分析了生产样品的硬度和拉伸性能。结果表明,纳米复合材料的力学性能和疲劳性能主要取决于初始阶段的材料性能和搅拌摩擦焊的应用条件,如转速和运动速度。纳米复合材料的断裂表面呈现出韧性-脆性复合断裂模式,韧窝更细,纳米弥散体的作用尤为突出。
19. Mur, VD, Popruzhenko, SV & Popov, VS 强激光辐射电离条件下光电子的能量和动量谱(椭圆偏振的情况)。《实验与理论物理杂志》92,777(2001 年)。
短脉冲激光-固体相互作用为研究复杂的高能量密度物质提供了独特的平台。我们首次展示了固体密度微米级 keV 等离子体在高达 2 × 10 21 W/cm 2 的强度下被高对比度、400 nm 波长激光均匀加热的现象。X 射线发射的高分辨率光谱分析表明,在 1 µ m 的深度内均匀加热至 3.0 keV。粒子内模拟表明产生了均匀加热的 keV 等离子体,深度达 2 µ m。靶内深处的显著体积加热和高度电离离子的存在归因于少数 MeV 热电子被捕获并在靶鞘场内进行回流。这些条件使得能够区分高能量密度环境中电离势降低的原子物理模型。
1 中国科学院神经科学研究所、神经科学国家重点实验室、脑科学与智能技术卓越创新中心,上海;2 中国科学院大学,北京;3 复旦大学类脑智能科学与技术研究所,上海;4 北京大学心理与认知科学学院、行为与心理健康北京市重点实验室、IDG/麦戈文脑研究中心、北大-清华生命科学中心,北京;5 浙江工业大学信息工程学院,杭州;6 深圳市神经精神调控重点实验室和脑科学协同创新中心、广东省脑连接组与行为重点实验室、中国科学院脑连接组与操控重点实验室、脑认知与脑疾病研究所、深圳先进技术研究院、深港脑科学研究院-深圳基础研究机构,深圳