建模和理解以高速率的电池电化学性能是一个巨大的挑战。以其快速速率和良好的环含量而闻名,五氧化氢盐(NB 2 O 5)是锂离子电池的有前途的阳极材料,并在这项工作中进行了专门建模和研究。使用扫描电子显微镜,X射线衍射和微型计算层造影术将商业化的NB 2 O 5进行了特征。NB 2 O 5材料被发现包含大小数十万微米的大杆和球状多晶颗粒,并具有混合的T-NB 2 O 5和H-NB 2 O 5相。通过循环伏安法和恒定循环测试,在不同的C速率上测试了球铣削后材料的电化学性能,高达50c(10,000 mA g-1)。在0.5C时达到与T-nb 2 O 5的材料达到了类似的电荷能力(143 mAh g-1),当C率增加到10C时,该容量可能会保留超过55%。实验结果用于支持NB 2 O 5的Doyle-Fuller-Newman电化学模型的发展。通过模型参数化,估计本NB 2 O 5的参考交换 - 电流密度和固态扩散率分别为9.6×10 - 4 A m-2和6.2×10 - 14 m 2 s - 1。具有获得恒定属性的5C电池的准确预测到5C的电流。然而,当保持模型和实验之间的良好协议时,发现NB 2 O 5的性质在较高的C速率下是速率依赖性的。在10-50c下,这两种特性的下降表明,从扩散控制的锂插入到电容效应的主要电荷存储机制发生了变化,这是在环状伏安法中实验观察到的。
使用一种新型的基于热力充分的技术作为一种适合这些高级反射器诊断需求的良好工具。热素感光谱已成为一种有力的工具,用于衡量材料光学性质的变化,并同时将光学性质的这些变化与物理和化学性质以及固体中的电子和热传输过程的相关变化相关。25–36疗法的原则依赖于测量由于温度和/或载流子密度的扰动而导致的样品反射率的变化。26,37,38最大程度地实现了热心型测量值,采用了激光泵 - 探针几何形状,其中调制泵激光器会诱导较小的振荡温度升高,而连续波(CW)探测器探针激光器显示反射率。在调制泵频率下的锁定检测可以使探针反射率的变化敏感至δr = 10-6 –6 –10-4。39–42这种检测表面反射率的小分数变化的能力使疗法更多地触觉计量学可行的途径,以检测表面化学,缺陷和结构的小变化,而这种途径可能无法通过传统上传统上采用的表面表征方法来分辨出来。43,44在这项研究中,我们比较椭圆法,X射线Pho- Toelectroscopicy(XPS),拉曼光谱和傅立叶变换红外(FTIR)光谱,如下所述。43,44在这项研究中,我们比较椭圆法,X射线Pho- Toelectroscopicy(XPS),拉曼光谱和傅立叶变换红外(FTIR)光谱,如下所述。此外,作为基于激光的泵 - 探针 - 探测热型光谱镜依赖于聚焦的激光源(通常是基于1/e 2个点尺寸的单位数字微米的顺序),这类测量还提供了出色的反射率空间分辨率,45-49
抽象理解冰川冰中杂质在定量水平上的显微镜变异性对于评估古气候信号的保存至关重要,并能够研究宏观变形和介电冰性能。通过激光燃烧感应耦合 - 质量 - 质量 - 频谱法(LA -ICP -MS)进行两维成像可以为冰中杂质的定位提供关键的见解。到目前为止,这些发现主要是定性的,并且获得定量见解仍然具有挑战性。LA -ICP -MS高分辨率成像的最新进展现在可以单独解决冰晶粒和晶界。这些决议需要新的足够的量化策略,因此,具有基质匹配标准的准确校准。在这里,我们提出了三种不同的定量方法,它们在几十微米的规模上提供了高水平的同质性,并专用于冰核的成像应用。提出的方法之一具有第二次应用,提供了实验室实验,以研究谷物生长的杂质移动,并具有研究冰与恋相互作用的重要潜力。标准,以实现选定冰芯样品中杂质的绝对定量。校准的LA -ICP -MS地图表明所有样品中杂质的类似空间分布,而杂质水平却差异很大:在冰川时期和格陵兰岛检测到较高的浓度,在南方中部的冰川间周期和样品中检测到较低的水平。这些结果与互补融化分析范围一致。与CM尺度熔化技术的进一步比较需要对跨空间尺度进行更复杂的理解,而校准的LA -ICP -MS地图现在可以定量地贡献。
描述 HALO ® 90 Å AQ-C18 是一种基于 Fused-Core ® 粒子设计的高速、高效液相色谱柱。Fused-Core ® 粒子在固体二氧化硅核心周围提供了一个高纯度二氧化硅薄多孔壳。由于 0.4 微米厚的多孔壳中的浅扩散路径和 2 微米的高度均匀的整体粒度,这种粒子设计表现出非常高的柱效率。HALO ® 90 Å AQ-C18 是一种 C18 键合相,采用专有工艺制备,加入少量极性硅烷,使相具有抗脱湿性。这种抗脱湿性使 AQ-C18 相的用户能够运行高水性(高达 100%)的流动相。改性 C18 相表现出与 HALO ® C18 类似的保留性,但选择性不同,为解决困难的分离增加了一种有价值的替代方案。 HALO ® 90 Å AQ-C18 是一种反相填料,可用于碱性、酸性和中性化合物。色谱柱特性 Fused-Core ® 颗粒的表面积约为 120 m 2 /g,平均孔径为 90 Å。由于实心核的密度,Fused-Core ® 颗粒比市售的全多孔颗粒重 30% 到 50%。因此,每个色谱柱的有效表面积与表面积在 225-300 m 2 /g 范围内的全多孔颗粒填充的色谱柱相似。操作指南 • 流动方向标记在色谱柱标签上。色谱柱不应以反向流动方向操作。(见下文色谱柱保养部分的讨论。)• 新色谱柱含有 100% 乙腈。最初应注意避免使用与此溶剂不混溶或可能导致沉淀的流动相。 • 水和所有常见的有机溶剂均与 HALO ® 90 Å AQ-C18 色谱柱兼容。 • 为最大程度地延长色谱柱寿命,HALO ® 90 Å AQ-C18 色谱柱最好在 60 ºC 以下使用。 • 为最大程度地延长色谱柱寿命,HALO ® 90 Å AQ-C18 色谱柱的流动相 pH 值最好保持在 pH = 2 至 9 的范围内。 • HALO ® 90 Å AQ-C18 色谱柱在高达 1000 bar (14,500 psi) 的工作压力下也能保持稳定。 色谱柱保养 为最大程度地延长色谱柱寿命,请确保样品和流动相不含颗粒。强烈建议在样品注射器和色谱柱之间使用保护柱或孔隙率为 0.5 微米的在线过滤器。 HALO ® 90 Å AQ-C18 色谱柱上的 1 微米孔隙率筛板比其他小颗粒色谱柱通常使用的 0.5 微米筛板更不容易堵塞,但如果色谱柱以反向流动方向运行,这些筛板可能会让少量填料颗粒逸出。色谱柱方向在标签上标明,只有在其他措施无法成功去除入口堵塞时才应反向冲洗色谱柱。要从色谱柱中去除强保留物质,用非常强的溶剂(例如所用流动相的 100% 有机组分)反向冲洗色谱柱。二氯甲烷和甲醇的混合物 (95/5 v/v) 通常可以有效完成此任务。极端情况下可能需要使用非常强的溶剂,例如二甲基甲酰胺 (DMF) 或二甲基亚砜 (DMSO)。色谱柱存储长期存储硅胶基反相色谱柱的最佳方法是使用 100% 乙腈。色谱柱可以在大多数常见流动相中安全存放短期(最多 3 或 4 天)。但是,当使用缓冲液时,最好同时保护色谱柱和 HPLC 设备,并使用相同的流动相(不含缓冲液)冲洗色谱柱以除去盐(例如,当使用 60/40 ACN/缓冲液时,用 60/40 ACN/H 2 O 冲洗色谱柱)以消除盐腐蚀的危险,同时使色谱柱与原始流动相快速重新平衡。储存柱子之前,应该用柱子附带的端塞将端头配件紧紧密封,以防止填料干燥。
合成具有可控成分、尺寸和形状的单分散胶体纳米晶体 (NC) 为组装新薄膜和设备提供了理想的构件。这些单分散胶体 NC 充当具有可调电子、光学和磁性的“人造原子”,可用于开发用于中观尺度设计的新型周期表。在本次演讲中,我将简要概述单相 NC 和核壳(异质结构)NC 的合成、纯化和集成的最新技术水平,强调具有可调形状(球体、道路、立方体、圆盘、八面体等)的半导体构件的设计。然后,我将分享如何将这些定制的 NC 组装成单组分、二元、三元 NC 超晶格,为生产多功能薄膜提供可扩展的途径。这些 NC 的模块化组装可以增强底层量子现象的理想特征,即使 NC 之间的相互作用允许出现新的非局域特性。在我们推动实现具有新 3D 结构和高迁移率(>30 cm2V-1S-1)设备集成的人造固体时,将强调 NC 之间电子和光学耦合的协同作用。我将分享薄膜晶体管、热电材料和可溶液处理的光伏方面的具体案例研究使用这些强耦合纳米晶体固体构建的设备突出了晶圆级 NC 超晶格沉积和图案化的最新发展,可能为可扩展制造提供途径。我还将分享微流体超粒子组装方法的进展。创建跨越数百纳米到数十微米的中尺度结构作为下一个构建单元尺度。
公共通知 请注意,新泽西州环境保护局(“NJDEP”)正在考虑一份关于贝永能源中心空气污染控制许可证修改的申请。(PI #12863,BOP220001))。该设施位于新泽西州哈德逊县贝永 Hook Road 401 号。贝永能源中心 (BEC) 是一座额定功率为 644 兆瓦 (MW) 的先进 10 单元天然气燃烧简单循环燃气轮机发电设施,位于新泽西州贝永,能够燃烧燃料油作为备用燃料源。1-8 号机组于 2012 年开始运营,9-10 号机组于 2018 年开始运营。燃气轮机是西门子/劳斯莱斯 Trent 60 湿式低排放 (WLE) 燃气轮机发电机 (CTG)。BEC 是 Title V 运营许可计划下的现有主要来源。燃气轮机配备了最先进的控制装置:干式低(氮氧化物)NO X 燃烧器和用于控制 NO X 的选择性催化还原 (SCR) 以及用于控制一氧化碳 (CO) 和挥发性有机化合物 (VOC) 的氧化催化剂。该设施还配备了应急发电机、消防泵和黑启动发电机。该设施目前受 2021 年 1 月 5 日颁发的 Title V 运营许可证 BOP 180001 监管。该设施是新源审查 (NSR) 计划下 NO X 和 VOC 排放的现有主要来源。该设施也是 Title V 运营许可证计划下一氧化碳 (CO)、总悬浮颗粒物 (TSP)、小于 10 微米的颗粒物 (PM 10 ) 和小于 2.5 微米的颗粒物 (PM 2.5 ) 排放的主要来源。根据 NSR 和 Title V 运营许可计划,该设施是所有其他标准污染物和有害空气污染物 (HAP) 的次要来源。拟议的修改 BOP 220001 将对 1-8 号机组进行运营改进,使其与 9-10 号机组在天然气燃烧期间的运营能力保持一致。改进允许发电机限制器从 64 MW 增加到 66 MW。超低硫柴油燃烧操作或应急发动机没有提议进行任何更改。修改将导致某些污染物的排放量略有增加。进行了环境空气质量影响分析,以证明符合所有适用的环境空气质量标准。根据新泽西州环境保护署署长 Shawn M. LaTourette 于 2021 年 9 月 20 日签署的新泽西州行政令第 2021-25 号,将于 2023 年 2 月 22 日星期三美国东部时间下午 6:00 至晚上 8:00 通过 MicroSoft Teams 虚拟会议室举行一次公共信息会议,以征求公众对该提案的意见。任何希望参加会议的人都可以通过联系 info@tigergenco.com 地址申请注册,或将书面申请发送至:Air Permitting, Bayonne Energy Center, 401 Hook Road, Bayonne, NJ 07002。欢迎公众参加此次公共信息发布会。对拟议行动的书面意见也可在公众意见征询期内提交,公众意见征询期为 2022 年 1 月 23 日至 2023 年 3 月 24 日。书面意见可发送至:info@tigergenco.com 或邮寄至 Bayonne Energy Center ATTN:Air Permitting,Bayonne Energy Center,401 Hook Road,Bayonne,NJ 07002。空气许可证申请的印刷版目前可在以下地点获取:Bayonne Public Library 607 Avenue C.,Bayonne,NJ 07002。当主分馆关闭时,申请文件将在分馆获取,地址为 16 W 4th St,Bayonne,NJ 07002。空气许可证申请的书面或电子请求也可发送至:Attn:Air Permitting,Bayonne Energy Center,401 Hook Road,Bayonne,NJ 07002 或 info@tigergenco.com。
通过cerkl基因突变看到的引起视网膜营养不良的北印度人口班萨尔*(1,2,3),debojyoti chakraborty(1)(1)(1)CSIR-基因组学和综合生物学研究所,德里,(2)景点研究,fortis Indiperies,fortis Indies Indive Isporties Indive Isporties Indive Indive Indive Indive Isporties Indive Indiperies,Instriped Isporties Indive Isporties Indive Isporties Indive Isporties Indive Isportion*临床特征,CERKL基因突变的基因型表型相关性,这是我们在印度北部的同类中看到的遗传性视网膜营养不良(IRD)患者的最常见基因突变之一。 材料和方法:研究包括临床诊断患有IRD的患者。 患者进行了超广阔的菲尔德(UWF)眼底照片,眼底自动荧光(FAF),光学相干断层扫描(OCT)。 完成了谱系图表。 下一代测序(NGS)进行遗传测试,分析了临床外显子组。 结果:我们报告了35例选择接受遗传测序的35例CERKL基因突变患者的眼科和遗传发现(在我们的62名22名IRD患者中)。 年龄从17至45岁(中位数25岁)不等。 视觉范围从logmar 0.18到1.8。 OCT显示出103至268微米的中央黄斑厚度(CMT)。 多数患者的眼底表现出黄斑色素的变化,其萎缩,消除或有限的周围视网膜色素变化;轻度的视盘苍白和最小的血管衰减。 在黄斑处的斑点低荧光是最常见的发现,视网膜周围的低自露倍率最小。通过cerkl基因突变看到的引起视网膜营养不良的北印度人口班萨尔*(1,2,3),debojyoti chakraborty(1)(1)(1)CSIR-基因组学和综合生物学研究所,德里,(2)景点研究,fortis Indiperies,fortis Indies Indive Isporties Indive Isporties Indive Indive Indive Indive Isporties Indive Indiperies,Instriped Isporties Indive Isporties Indive Isporties Indive Isporties Indive Isportion*临床特征,CERKL基因突变的基因型表型相关性,这是我们在印度北部的同类中看到的遗传性视网膜营养不良(IRD)患者的最常见基因突变之一。材料和方法:研究包括临床诊断患有IRD的患者。患者进行了超广阔的菲尔德(UWF)眼底照片,眼底自动荧光(FAF),光学相干断层扫描(OCT)。完成了谱系图表。遗传测试,分析了临床外显子组。结果:我们报告了35例选择接受遗传测序的35例CERKL基因突变患者的眼科和遗传发现(在我们的62名22名IRD患者中)。年龄从17至45岁(中位数25岁)不等。视觉范围从logmar 0.18到1.8。OCT显示出103至268微米的中央黄斑厚度(CMT)。多数患者的眼底表现出黄斑色素的变化,其萎缩,消除或有限的周围视网膜色素变化;轻度的视盘苍白和最小的血管衰减。在黄斑处的斑点低荧光是最常见的发现,视网膜周围的低自露倍率最小。所有患者的遗传测序均显示出相同的突变,在CERKL基因的外显子7(CHR2:G.181548785_181548786DEL)中是2个碱基对缺失。偶然,所有患有CERKL基因突变的患者均来自一个族裔群落,提示创始人突变效应。结论:CERKL基因结果中的突变是印度北部IRD的最常见原因之一。受影响的患者显示出明确的早期黄斑受累。这项研究报告了在印度北部一个大种族社区中Cerkl基因中的创始人突变效应的存在。关键词:创始人突变,CERKL基因突变,基因型表型相关,遗传性视网膜营养不良(IRD),色素性视网膜炎(RP)
- 芝加哥大学和Argonne国家实验室(ANL)开发了一种新技术,该技术将单晶钻石膜直接粘合到量子和电子技术中的各种材料,包括硅。 Diamond提供了无与伦比的特性,其电子技术具有宽带的带镜头,极好的热导率和介电强度,量子技术可在室温下进行出色的量子传感。但是,由于底物和生长层是同质材料,因此很难将不同材料直接积累到设备中,这需要使用大量钻石。在这项研究中,通过使用基于血浆激活的键合技术,我们通过确保钻石和载体基板的光滑表面成功地粘结了极其平坦的材料表面,准确的厚度和材料的原始材料质量。退火过程促进和加强粘结,从而使钻石膜能够承受各种纳米化过程。在钻石中,每个碳原子与其他四个碳原子之间的电子共价键形成其坚硬,耐用的内部结构。这次,通过在钻石膜的表面上创建许多悬挂的键(无伴侣的键),这是形成了对不同材料“粘合”的表面。结果,钻石膜直接粘合到诸如硅,融合二氧化硅,蓝宝石,热氧化物膜,尼贝特锂等的材料,而无需使用介体进行粘附。与厚度为数百微米的散装钻石(通常是在量子研究中使用的),而是合并了100 nm薄钻石膜,同时保持适合高级量子应用的自旋相干性。 - 这项新技术基于从1940年代开发的大型晶体管的互补金属氧化物半导体(CMOS)的进步,转至现代计算机等中使用的功能强大,精细的集成电路。 - 该技术已获得专利,现在已通过大学的波尔斯基企业家和创新中心进行商业化。这项研究得到了美国能源部(DOE)科学局(SC)的国家量子信息科学研究中心的支持,作为Q-Next中心的一部分。
在过去的十年中,单晶钻石(SCD)生长的显着技术进步导致了高质量SCD底物的商业产品,通常以尺寸的几个平方毫米的良好特定板的形式获得[1]。同时,此类板的成本已大大降低[2],这引发了重要的研发工作,旨在利用SCD的特性[3],热[4]和机械性能[5] [5]用于电子学中的各种应用[6],光(光(光环)[7-10],光学和光学技术[11] [11] [11] [11] [11] [11] [11] [11])[11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11] [11]。高质量的SCD板是通过化学蒸气沉积(CVD)[13,14]或高压高温(HPHT)[15]技术生长的。记录示范最近产生的SCD底物直径为10 cm [16],但如今更典型的尺寸为1 mm – 10 mm,厚度为50μm -1 mm。基板以不同的“等级”类别提供(例如电子[6,17],光学[18]或机械[19])根据其杂质的程度,这表明底物性质已被遗忘,特别适合特定的应用区域。SCD的精确成型主要是使用激光切割和烧蚀技术以毫米尺度的目标维度进行的,具有几微米的精确性要求,例如切片钻石板或制造切割工具,用于转弯,敷料或铣削。微丝[41-47]和光栅[48,49])和光子学(例如用于耦合器[50-54]和谐振器[52,55-59])。激光处理也用于千分尺尺度的结构,例如复合折射率[20-23],埋入的波导[24-26]和微通道[27,28]。离子束蚀刻(IBE)可以有效地平滑并抛光SCD板[29,30],而聚焦的离子束(FIB)铣削已用于制造悬浮的结构[31-33],砧[34,35]和固体膜片[36-38]。尽管这些图案技术对于一组特定形状和设备最有效,但基于反应性离子蚀刻(RIE)制造方法是最常用的方法,用于广泛的应用,需要亚微米精度[39,40],例如微观典型(例如,与Rie相比
面等离子体共振,促进了先进传感器的发展。[2,3] 在介电材料上制造的纳米孔阵列——更普遍地说是由亚波长直径的孔组成的规则有序结构——构成了集成二维光子晶体和全介电超表面架构的基础,能够以前所未有的水平限制和操纵光(包括幅度、光谱和空间管理)。[4] 这种等离子体和全介电纳米结构的纳米制造的通常技术方法依赖于各种工具和方法,其中包括聚焦离子束、电子束、光刻、反应离子蚀刻等。[5,6] 这些制造方法成熟且性能高,然而它们速度慢,需要针对所用每种材料进行优化的几个步骤和技术,从而不可避免地增加了整个过程的总成本和复杂性。未来的先进设备现在要求除了利用完美控制的平面纳米图案(在 X 和 Y 维度)之外,还需要利用第三维度(Z)。[7] 特别是,深度至少达到几微米的纳米孔阵列排列可以大大拓宽纳米光子结构的可能设计和功能范围。[7,8] 然而,在材料表面制造具有圆柱形轮廓的如此深的孔的技术具有挑战性。[9–12] 因此,引入一种多功能的制造方法,将孔深度添加为一个直接且独立的自由度,有望形成先进的架构。在此背景下,我们探索超快激光加工作为在参考介电材料熔融石英表面创建深气孔的直接方法。所谓“直接”,是指通过一步工艺制造一个孔,只用一次激光照射即可烧蚀物质,无需任何额外处理(例如化学蚀刻[13]),也无需平移目标材料。[14] 尽管超短脉冲直接激光烧蚀的最终空间分辨率尚未达到足够的性能标准,无法与传统纳米制造工艺相媲美,无法制造功能性纳米光子元件,但我们的目标是表明它代表了一种替代和互补的解决方案,在速度、无掩模和一步工艺、不需要真空环境或化学品方面具有吸引人的优势。此外,纳米结构可以在单个