低温和高温超导体的机电特性,对开发高能物理粒子加速器,融合能量反应器和医学成像技术感兴趣的社区感兴趣。应变行为,微结构特性和超导体处理之间的因果关系。电动传输和磁通特性。超导体表征的计量发展。计量基准测试。出版物:
Metal-Air电池是一种具有独特开放结构的环保储能系统。镁(MG)及其合金已被广泛尝试作为空气电池的阳极。但是,关于MG空气电池(MAB)的研究目前仍处于实验室水平,这主要是由于耐腐蚀性较差引起的低阳极效率。为了减少腐蚀损失并实现MG阳极的最佳利用率效率,从微观结构的角度审查了设计策略。首先,已经讨论了腐蚀行为,尤其是氢进化产生的负差异效应。特别注意阳极微结构对MAB的影响,其中包括晶粒尺寸,晶粒方向,第二阶段,晶体结构,双胞胎和脱位。为了进一步改进,考虑了排放性能,长期堆叠阶阶段及其增强效果。同时,鉴于当前关于MG树突的辩论,潜在的风险,对排放的影响以及消除策略的讨论。微结构控制和单晶将是mAb阳极的有希望的方法。©2024重庆大学。Elsevier B.V.代表KEAI Communications Co. Ltd.这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nc-nd/4.0/)下的开放式访问文章。
pHS 5、7和9的水凝胶。评估了AFGO浓度和培养基pH,并与悬浮液的微观结构和风湿性有关。使用改良的鹰嘴豆法合成氧化石墨烯(GO)纳米片,并通过微波辅助反应与三乙基环胺一起官能化以产生AFGO。纳米片的特征是不同的技术,例如扫描电子显微镜(SEM),热重分析,拉曼光谱和X射线光电光谱。悬浮液通过稳态和动态流,ZETA电位和冷冻-SEM进行微结构分析来通过流变学检验进行特征。所有样品均表现出粘性行为,并由Herschel - Bulkley方程进行建模。关于碱基水凝胶,在pH 9下制备的样品显示出较低的粘度,屈服应力和弹性模量。在所有pHS上,纳米片浓度的增加会促进屈服应力,粘度,存储和损失模量的下降。冷冻仪显示pH对碱基水凝胶结构的影响。也可以观察到纳米添加浓度的增加会影响卡伯波尔微凝胶肿胀并削弱悬架微结构。
缩小 SiPh 封装与晶圆级 HVM 之间的差距 万亿级 PhotonicPlug 和 PhotonicBump:由 NIL 完成 在 SiPh 晶圆上对透镜或镜子等复杂光学微结构进行纳米压印 重要 图案保真度和可重复性 可扩展性 最高对准精度 残留层控制 薄而均匀 光纤沟槽与镜子完美对准
未来几年,我们将掌握临界尺寸在 30 纳米 - 150 纳米数量级的纳米电子和光子微结构。电子和离子光刻技术可以满足进一步电子设备小型化挑战的要求。定量估计光刻胶改性参数 [I] 是优化电子和离子光刻曝光以及相关的显影过程的重要一步。由于光刻胶层的聚合物分子发生交联或断裂,溶解率在辐照后会发生变化。经过适当溶剂(显影剂)的适当显影过程后,可以观察到光刻胶层中的浮雕微结构。在显影过程中,正光刻胶的辐照区域和负光刻胶的相反区域(未辐照区域)被去除。辐照点的溶解率变化取决于所使用的曝光剂量。聚合物光刻胶对辐射(电子束和离子束)的敏感度是通过曝光图像显影过程中的最小剂量 Do 来衡量的。光刻胶的敏感度由辐射粒子的辐射效率决定,辐射效率可以用吸收能量每单位(即电子伏特)的平均化学事件数(断链或破坏)来表征。在高分辨率电子束和离子束光刻领域,非常重要的一点是
这项研究介绍了一种直接的方法,用于使用两光子激光打印制造3D微结构细胞粘附和固定的多质质量。与现有策略相比,这种方法提供了自下而上的分子控制,高可定制性以及快速,精确的3D制造。基于可打印的细胞粘合剂PEG材料包括通过固相肽合成合成的含RGD的肽,从而可以精确控制肽设计。明显地,足以赋予细胞粘附性的RGD肽(<0.1 wt%)的最小量,同时将3D打印的微结构中的机械性能保持在3D打印的微观结构中,以使细胞固定的基于PEG的基于PEG的材料的机械性能。RGD肽的荧光标记促进了其在细胞粘附区域中的存在。为了展示我们系统的广泛适用性,我们展示了细胞粘合剂2.5D和3D结构的制造,从而促进了这些体系结构中成纤维细胞的粘附。因此,这种方法允许打印高分辨率的真实3D结构,适用于各种应用,包括复杂环境中的细胞研究。
创伤后应激障碍 (PTSD) 是一种复杂、慢性且使人衰弱的精神障碍,是在遭受严重心理创伤后形成的。PTSD 的特点是出现侵入性思维、噩梦和回忆过去的创伤事件、回避创伤提醒、过度警觉、睡眠障碍以及持续的应激反应失调 [1]。这些长期症状会导致严重的社交、职业和人际功能障碍。世界卫生组织 (WHO) 报告称,全球跨国 PTSD 的终生患病率为 3.9% [2],而在战斗人员中患病率可高达 30% [3]。不幸的是,目前可用的治疗方法,包括药物和以创伤为重点的心理治疗,效果有限,近一半的患者患有难治性 PTSD [4]。新的脑成像技术使我们能更好地了解导致 PTSD 的病理生理学。现已清楚,创伤性事件会导致大脑活动和微观结构完整性的长期变化。主要的创伤相关病理表现在额叶边缘回路、杏仁核、海马和前额叶皮质[5-8]。高压氧疗法(HBOT)包括在超过1个绝对大气压(ATA)的压力下吸入100%氧气,从而增加溶解在身体组织中的氧气量。高压氧疗法的许多有益作用可以通过组织/脑氧合的改善来解释。然而,目前据了解,间歇性高氧和高压的共同作用会触发氧和压力敏感基因[9]。此外,脑代谢率增加、线粒体功能恢复、刺激细胞增殖和内源性神经干细胞成熟,以及诱导抗炎、血管生成和神经生成因子均已在高压氧疗法后得到证实(9)。来自中风后和创伤性脑损伤 (TBI) 研究的累积证据表明,即使在脑损伤数年后,高压氧疗法也能在慢性代谢功能障碍的大脑区域诱导神经可塑性 [10,11]。最近的研究还证明高压氧疗法可诱导神经可塑性,并显著改善纤维肌痛患者(包括因童年虐待引起纤维肌痛的患者)的临床症状 [12,13]。高压氧疗法对创伤后应激障碍的潜在有益作用在患有 TBI 的退伍军人中进行了研究,TBI 通常与创伤后应激障碍同时存在。在大多数研究中,创伤后应激障碍症状得到了显著的临床改善 [14-20]。但是,据我们所知,这些研究中没有一个将创伤后应激障碍作为独立的病理进行研究。本研究的目的是评估高压氧疗法对患有难治性战斗相关创伤后应激障碍的退伍军人的临床结果、大脑功能和大脑微观结构完整性的影响。
优化电极制造工艺对于扩大锂离子电池 (LIB) 的应用以满足不断增长的能源需求非常重要。特别是,优化 LIB 制造非常重要,因为它决定了电池在电动汽车等应用中的实际性能。在这项研究中,我们提出了一种强大的数据驱动方法,该方法由确定性机器学习 (ML) 辅助管道支持,用于双目标优化电化学性能,解决了适合所需电池应用条件的高性能电极问题。该 ML 管道允许采用工艺参数的逆向设计,以制造用于能源或电力应用的电极。后者的工作类似于我们之前的工作,该工作支持优化电极微结构以改善动力学、离子和电子传输性能。电化学伪二维模型输入了电极特性,这些特性表征了通过制造模拟生成的电极微结构,并用于模拟电化学性能。其次,使用得到的数据集训练确定性 ML 模型,以实施快速双目标优化,从而确定最佳电极。我们的结果表明,活性材料含量高,结合浆料中固体含量和压延程度的中间值,可实现最佳电极。
1 海德堡大学理论物理研究所,Philosophenweg 19,69120 海德堡,德国 2 墨尔本大学机械工程系,Parkville,VIC 3010,澳大利亚 3 维也纳技术大学固体物理研究所,1040 维也纳,奥地利 4 华盛顿大学物理系,西雅图,WA 98105,美国 5 萨斯喀彻温大学物理与工程物理系,萨斯卡通,萨斯喀彻温省,加拿大 S7N 5E2 6 不列颠哥伦比亚大学 Stewart Blusson 量子物质研究所,温哥华,不列颠哥伦比亚省,加拿大 V6T 1Z1 7 海德堡大学物理研究所,Im Neuenheimer Feld 226,69120 海德堡,德国 8 南京大学固体微结构国家实验室和物理系,南京 210093,中国 9 南京大学先进微结构协同创新中心,南京 210093,中国 10 马克斯普朗克固体研究所,Heisenbergstraße 1, 70569,斯图加特,德国 11 不列颠哥伦比亚大学量子物质研究所和物理与天文系,2355 East Mall,温哥华,V6T 1Z4,加拿大 12 欧洲同步辐射装置(ESRF),CS40220,38043,格勒诺布尔 Cedex,法国 ⋆ MWHaverkort@thphys.uni-heidelberg.de
摘要。材料在塑造人类历史和文明中起着至关重要的作用,金属,聚合物,陶瓷和复合材料对科学技术的发展至关重要。在金属中,钢铁在制造行业中受到了优势和韧性的青睐。热处理可显着影响钢的材料特性。本研究采用PMI大师智能牛津OE(光学发射光谱法)进行组成分析,微观结构检查的光学显微镜以及用于硬度测试的Vickers方法。AISI 1040钢试样在720°C的消声炉中加热60分钟,然后在冷水(5°C)中淬火,室温水(30°C)和热水(70°C)。结果表明,在冷水中淬灭的标本表现出258.39 HV的最高硬度值,其微结构为45.45%珠光石和54.55%的铁矿。相比之下,在热水中淬灭的标本显示最低的硬性值为215.09 hv,其微结构由29.20%的珠光体和70.80%的铁素体组成。这些发现突出了淬灭温度对AISI 1040钢的硬度和微观结构特性的显着影响。