摘要近年来,多室模型被广泛用于尝试从扩散磁共振成像 (dMRI) 数据中表征脑组织微观结构。这种方法的主要缺点之一是需要先验决定微观结构特征的数量,并将其嵌入模型定义中。然而,在给定采集方案的情况下可以从 dMRI 数据中获得的微观结构特征数量仍然不清楚。在这项工作中,我们旨在使用自动编码器神经网络结合旋转不变特征来表征脑组织。通过改变自动编码器潜在空间中的神经元数量,我们可以有效地控制从数据中获得的微观结构特征的数量。通过将自动编码器重建误差绘制到特征数量,我们能够找到数据保真度和微观结构特征数量之间的最佳权衡。我们的结果显示了该数字如何受到壳层数量和用于采样 dMRI 信号的 b 值的影响。我们还展示了我们的技术如何为更丰富地表征体内脑组织微观结构铺平道路。
摘要:对激光熔化过程(例如,对于金属添加剂制造)越来越感兴趣。建模和数值模拟可以帮助理解和控制这些过程中的微观结构演变。然而,微结构模拟的标准方法通常不适合对激光处理中快速固化相关的动力学效应进行建模,尤其是对于包含金属间相的材料系统。在本文中,我们介绍并采用了量身定制的相位场模型来展示此类系统中微观结构演变的独特特征。最初,使用量身定制的相结合模型重新审视了金属层间合理期间异常分配的问题,并针对Ni-Al二进制系统中B2相的现有实验数据评估了模型预测。随后将模型与晶粒生长的POTTS模型结合在一起,以模拟包含金属间相的多晶合金的激光加工。示例用于激光处理富含镍的Ni-AL合金,以证明该方法在研究处理条件对各种微观结构特征的影响时的应用,例如熔体池中金属间相和受热影响区域的金属间相分布。本研究中使用的计算框架设想为在工业相关材料的激光处理中(例如,在基于NI的Superalloys的激光焊接或添加剂制造中)提供了更多了解微观结构的演变。
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。它是制作
摘要:全固态电池(ASSB)的实际应用需要在低压下可靠运行,这仍然是一个重大挑战。在这项工作中,我们研究了由不同粒径固态电解质(SSE)组成的正极复合微结构的作用。由 LiNi 0.8 Co 0.1 Mn 0.1 O 2(NCM811)和细颗粒 Li 6 PS 5 Cl(LPSC)制成的复合材料在 NCM811 颗粒表面显示出更均匀的 SSE 分布,确保了紧密接触。此外,该复合材料的曲折度降低,从而增强了锂离子传导。这些微观结构优势可显着降低电荷转移电阻,有助于抑制低压条件下循环过程中的机械变形和电化学降解。因此,细 LPSC 正极复合材料在 2 MPa 的中等电堆压力下表现出增强的循环稳定性,优于粗 LPSC。我们的发现证实了微结构设计在实现低压条件下高性能 ASSB 运行中的重要作用。
频率选择表面 (FSS) 由周期性排列的一维或二维金属结构组成,由于其频率谐振特性而备受关注。FSS 可以根据其尺寸、形状、厚度和其他参数在特定频率范围内选择性地反射 (带阻) 或透射 (带通) 入射电磁波,这是 FSS 的识别特征。[1] 金属和介电材料结构被广泛用于设计太赫兹 FSS 或滤波器,因为它们具有高机械强度,有助于产生功能化设计。金属 FSS 可以通过反射或吸收电磁干扰来屏蔽,但是,制造所需结构的成本很高,并且正在被碳基材料取代,以获得高频电磁特性,具有合适的成本、重量轻、无腐蚀等特点。[2] 通常,碳基材料以 sp、sp 2 和 sp 3 键合,形成相互连接的碳-碳键的长链,从而产生不同的物理和电性能。 [3] 因此,这类材料可归类为半金属或非电介质材料(如石墨烯、石墨、碳纳米管、碳纳米纤维)[4,5],因此通过在磁场和电场中应用飞秒激光脉冲产生 THz 脉冲,其纳米复合材料可表现出 THz 光跃迁、光电特性和介电特性。[6–11] 由于存在非局域 π 键电子,这些碳基材料表现出优异的 EMI 屏蔽性能。自由移动的电子与电磁波相互作用,导致反射,在共振频率下具有最大回波损耗值。[12] 过多的电磁能量会损坏周围的电路并引起不必要的噪声脉冲。Liang 等人。报道了竹状短碳纤维@Fe3O4@酚醛树脂和蜂窝状短碳纤维@Fe3O4@FeO复合材料作为高性能电磁波吸收材料,在4-18 GHz范围内成功实现了反射损耗-10 dB。[13]然而,在文献中对碳基材料在THz范围内的表征仍然没有很好的解释,关于碳基材料FSS特性的报道很少。最近,一种利用3D打印制造的碳基FSS吸收器
abtract。本文详细介绍了通过使用356铝合金和B 4 C粉末搅拌铸造的双重颗粒复合材料进行的研究。三个复合组合物,即A356加2%B 4 C(44µm大小和1:1比例的105µm大小),4%B 4 C(3:1比)和6%B 4 C(1:3比)用手指施放,从中为硬度和紧缩测试和张力测试效果准备了测试样品,以进行测试样品。Vickers硬度测试,拉伸测试和显微结构分析。获得的结果表明B 4 C颗粒均匀分布在合金基质中。eds还揭示了所有三个复合材料中B 4 C的存在。通常,随着浓度b 4 c粉末的增加,硬度和拉伸强度会增加。虽然硬度的增加量却小于15%,但拉伸强度显着增加(超过35%)。然而,以%伸长为代表的延展性,在356铸造合金中已经非常低(24.2%),在复合材料中进一步降低。拉伸分裂结果显示了晶体间断裂,其中观察到B 4 C粒子中的断裂而不是Deboning。k eywords。A356铝合金;双重复合材料;微观结构;机械测试;研究分析。
颞叶癫痫(TLE)是最常见的耐药性癫痫之一,与旁皮脑区域的病理学有关,尤其是在中颞叶中。TLE中的认知功能障碍是经常发生的,并且特别影响情节记忆。至关重要的是,这些困难挑战了患者的生活质量,有时不仅仅是癫痫发作,强调了评估TLE认知功能障碍的神经过程以改善患者的管理。我们的工作利用了一种新型的概念和分析方法,以根据高分辨率MRI分析来评估皮质区域之间微结构差异的空间梯度。梯度轨道轨道区域到区域内的区域变化和骨髓结构的结构,作为结构和功能性组织的系统级别量度。比较了21例患者和35个健康对照之间的皮质范围的微结构梯度,我们观察到了这种梯度在TLE中的组织,这是由于旁皮皮质之间的微观结构分化降低以及剩余的皮质在同侧颞骨和背侧外发前额外区域的显着异常。发现在独立队列中复制。使用独立的验尸数据集,我们观察到体内发现反映了皮质细胞结构中的地形变化。我们确实发现,TLE中微观结构分化的宏观变化反映了帕拉林比克和原发性/运动区域的相似性的增加。与疾病相关的转录组学可以进一步显示我们发现对其他常见癫痫综合征的特异性。最后,微结构的推导与在情节内存功能性MRI范式中看到的认知网络回归有关,并且与任务准确性的个体差异相关。总的来说,我们的发现表明了副层副反应和剩余皮层之间的微体系分化降低的模式,为大规模功能网络重组和TLE的认知功能障碍特征提供了一个结构上的解释。
Siham Telitel,Jason C Morris,Yohann Guillaneuf,Jean-LouisClément,Fabrice Morlet-Savary等。激光直接编写硝基氧化物介导的pho介导的聚合物微结构的激光撰写。ACS应用材料和界面,2020,12(27),pp.30779-30786。10.1021/ac-Sami.0C06339。hal-02997174
摘要:氮化钛(Ti-n)薄膜是电导和导导的,具有高硬度和耐腐蚀性。致密和无缺陷的Ti-N薄膜已被广泛用于切割工具,耐磨性组件,医疗植入装置和微电子的表面修饰。在这项研究中,通过高功率脉冲磁控溅射(HPPM)沉积了Ti-N薄膜,并分析了其血浆特性。通过调节底物偏置电压以及其对微结构,残留应力和薄膜的粘附的影响来改变Ti物种的离子能量。结果表明,在引入氮气后,在Ti靶标表面形成了Ti-N化合物层,从而导致Ti目标放电峰功率增加。此外,Ti物种的总频量减少,Ti离子的比率增加。HPPM沉积的Ti-N薄膜密集且无缺陷。当Ti-ions的能量增加时,Ti-nfim的晶粒尺寸和表面粗糙度减少,残留应力增加,Ti-N Thin Fimflm的粘附强度降低。
F. Kotz博士,P。Risch,D。Helmer博士,B。E。Rapp Glassomer Georges-georges-köhler-Allee-Allee 103,79110弗里布尔格,德国,德国电子邮件:Frederik.kotz.kotz.kotz.kotz@glassomer.com工程(IMTEK)弗莱堡大学79110德国弗里堡电子邮件:frederik.kotz@imtek.de F. Kotz博士F. Kotz博士,D。Helmer博士,D。Helmer博士,B。E。Rapp Freiburg材料研究中心(FMF)Freiburg 79104 Freiburg,Dermany freiburg,德国弗里伯格大学Hermann-Von-Helmholtz-Platz 6,76344 Eggenstein-Leopoldshafen,德国