我们采用完全自洽的横向分辨 Hartree-Fock 近似,以数值方式处理近宏观样本尺寸的量子霍尔区域中较高朗道能级的电子配置。在低无序性下,我们发现空间分辨的条纹和气泡状电荷密度调制,并展示了它们如何根据填充因子出现。这些边界区域的微观细节决定了将电荷密度调制对齐为条纹或气泡的几何边界条件。使用非平衡网络模型模拟传输,在接近半填充的条纹区域中,注入电流的方向具有明显的各向异性。我们获得的条纹周期为 2.9 个回旋半径。我们的结果提供了对其在强磁场中后果的直观理解,并表明在长度尺度上研究时,整数量子霍尔区域中的许多粒子物理学占主导地位。
金属增材制造(MAM)技术在制造与再制造行业中得到广泛应用,微观组织模拟逐渐凸显其重要性。传统的凝固微观组织模拟方法在MAM应用中都有其优缺点。本文建立了一种确定性凝固微观组织模型,即“侵入模型”,以避免传统方法的本质缺陷。该模型不模拟各个柱状晶粒的生长动力学或推导变量的场形式,而是关注相邻双晶之间的相互作用。在双晶系统中,晶界从热梯度方向的倾斜被理解为一个晶粒向另一个晶粒的瞬时侵入行为,而MAM形成过程中的竞争性晶粒生长行为则是双晶系统中所有侵入行为的总结。为了填补快速凝固理论的空白,利用人工神经网络(ANN)建立了快速定向凝固条件下各向异性生长效应的数据库。以采用线材送料定向能量沉积 (DED) 制备的具有完整树枝状柱状晶粒 (原始 β 晶粒) 的 Ti6Al4V 薄壁样品为基准,测试了新模拟模型的有效性。沿堆积方向重构的原始 β 晶粒的晶粒几何结构与模拟结果具有很好的一致性。在满足应用范围的情况下,该模型还可以应用于 MAM 的其他情况或与各种模型结合,以实现实时凝固晶体学特征预测。关键词:增材制造;微观结构;建模;凝固
1 斯坦福大学医学院精神病学和行为科学系,斯坦福,CA 94305。2 斯坦福大学医学院神经病学和神经科学系,斯坦福,CA 94305。3 斯坦福大学医学院斯坦福神经科学研究所,斯坦福,CA 94305。4 Athena,Inria Sophia Antipolis,法国蔚蓝海岸大学,2004 route des Lucioles 06902 Sophia Antipolis CEDEX,法国。 5 普林斯顿大学普林斯顿神经科学研究所,新泽西州普林斯顿 08544 6 斯德哥尔摩皇家理工学院计算科学与技术系,新泽西州斯德哥尔摩 08544。7 Defi,Inria Saclay 法兰西岛,巴黎南大学综合理工学院 1 Rue Honoré d'Estienne d'Orves 91120 Palaiseau,法国。 8 Parietal,Inria Saclay Île-de-France,CEA University Paris Sud 1 Rue Honoré d'Estienne d'Orves 91120 Palaiseau,法国。通讯作者:Vinod Menon 博士和 Demian Wassermann 博士。电子邮件:menon@stanford.edu; demian.wassermann@inria.fr
在本文中,我们将证明宇宙学与普朗克尺度之间存在联系。近年来,人们已经证明,普朗克长度可以独立于 G 、¯ h 和 c 确定,而且一系列宇宙学预测可以仅从两个常数(即普朗克长度和引力速度)推导出来。引力速度可以很容易地在不知道光速的情况下确定 [ 1 , 2 ]。这为宇宙学提供了一个新的视角,并证明了普朗克尺度与宇宙学之间存在联系。这与最近将广义相对论与康普顿频率和普朗克尺度联系起来的广义相对论量化理论完全一致。我们研究了弗里德曼宇宙学和最近基于 Reissner-Nordstrom、Kerr 和 Kerr-Newman 度量的极值解引入的宇宙学。1
Micro-Credential Bulletin,2023年6月7日(https://catalog.purdueglobal.edu/bulletin/bulletin/micro-credential_bulletin_2023_06_07.pdf)Micro-Credential Bulletin,3月22日,2023年3月22日,2023年3月22日(https://catalog.purdueglobal.edu/bulletin/micro-credential_bulletin_2023_03_22.pdf)Micro-Credential公告,2023年2月8日(https://catalog.purdueglobal.edu/bulletin/micro-credential_bulletin_2023_02_08.pdf)Micro-Credential公告,2023年1月11日(https://catalog.purdueglobal.edu/bulletin/micro-credential_bulletin_2023_01_11_11.pdf)Micro-Credential公告,2022年12月7日(https://catalog.purdueglobal.edu/bulletin/micro-credential_bulletin_2022_12_12_07.pdf)Micro-Credential公告,2022年10月19日(https://catalog.purdueglobal.edu/bulletin/micro-credential_bulletin_2022_10_19.pdf)Micro-Credential Bulletin,2022年8月3日(https://catalog.purdueglobal.edu/bulletin/micro-credential_bulletin_2022_08_03.pdf)
产前暴露于孕产妇炎症的增长与不良神经发育结局有关,包括非典型的大脑成熟和精神病。在经历社会经济劣势的母亲中,免疫激活可能是这种环境困难所固有的慢性压力的产物。虽然促进临床前和临床证据的发展已经显示出改变了新生儿大脑发育的改变与子宫内炎症状态的增加之间的联系,但社会经济劣势差异影响神经免疫串扰的潜在机制仍然不清楚。在当前的研究中,我们调查了320个因贫困而过采样的母亲二元组中的社会经济劣势,妊娠中肿块和新生儿白质微观结构之间的关联。我们在妊娠过程中分析了四种细胞因子(IL-6,IL-8,IL-10,TNF-α)的产妇血清水平与后代白质微观结构和社会经济缺陷有关的妊娠过程。较高的平均母体IL-6与非常低的社会经济状况(SES; INR <200%贫困线)和较低的新生儿皮质脊髓分数各向异性(FA)和较低的非轴向扩散(AD)有关。没有其他细胞因子与SES相关。较高的平均母体IL-10与Callosum和皮质脊髓区域中的FA较低和较高的径向扩散率(RD)相关,较高的光学辐射RD,下腹部下额叶和较低的FA和下部额叶额叶和较低的FA。SES调节妊娠期间平均母体TNF-α水平与新生儿白质扩散率之间的关系。当分解这些相互作用时,模式表明这种关联在非常低的SES新生儿中是显着和正面的,因此TNF-α与下符号AD成反比和显着相关。相比之下,在更优势的新生儿(较低至高的SES [INR≥200%贫困线])中,TNF-α与上符号AD呈阳性且显着相关。综上所述,这些发现表明,产前细胞因子暴露与白质微观结构之间的关系随SES的函数而不同。这些模式与一个场景一致,即妊娠弹性对白质发育的影响取决于子宫内基础资源的可用性。
用高科技合金制造结构件的成本很高,因此,缺陷或磨损的修复对工业生产来说是一项重要的资产[1]。在众多新技术中,激光熔覆(又称直接能量沉积)正处于新兴领先地位。与其他修复工艺相比,熔覆中的能量输入是空间局部的,受热影响区较小[2–4]。在激光熔覆修复的部件中,基材和熔覆区之间会形成一个具有微观结构梯度的界面。它决定了修复部件的内聚力和寿命[5, 6]。工艺参数和部件的具体几何形状共同控制着热输入、熔池形状、空间温度梯度和冷却速度,而这些因素决定着材料的微观结构。材料体积可以经过多次凝固-再熔化循环,打印上述各层,具体取决于熔池深度和形状,熔池深度和形状可能非常复杂,正如 Biegler 等人在 [7] 中通过实验展示的那样。材料随后也会经历退火,因为部件一直处于高温下,直到工艺结束 [8, 9]。
由于缺乏全面的数据集和缺陷类型的多样性,自动检测增材制造的 Ti6Al4V 材料中的微观结构缺陷面临巨大挑战。本研究介绍了一种应对这些挑战的新方法,即开发专门针对扫描电子显微镜 (SEM) 图像的微观结构缺陷数据集 (MDD)。我们使用此数据集训练和评估了多个 YOLOv8 模型(YOLOv8n、YOLOv8s、YOLOv8m、YOLOv8l 和 YOLOv8x),以评估它们在检测各种缺陷方面的有效性。主要结果表明,YOLOv8m 在精度和召回率之间实现了平衡,使其适用于可靠地识别各种缺陷类型中的缺陷。另一方面,YOLOv8s 在效率和速度方面表现出色,尤其是在检测“孔隙”缺陷方面。该研究还强调了 YOLOv8n 在检测特定缺陷类型方面的局限性以及与 YOLOv8l 和 YOLOv8x 相关的计算挑战。我们的方法和发现有助于科学地理解增材制造中的自动缺陷检测。MDD 的开发和 YOLOv8 模型的比较评估通过提供检测微结构缺陷的强大框架来推进知识水平。未来的研究应侧重于扩展数据集和探索先进的 AI 技术,以提高检测准确性和模型泛化能力。
系统。这些多功能设备(或系统)利用集成电路(IC)批处理处理技术来制造这些复杂的设备,将机械工程的精度与电气工程的复杂性融合(Wang等人。2024; Algamili等。2024; Geetha 2011)。mems设备和系统具有感知,控制和攻击的能力,并在微观尺度和产生影响宏观尺度的效果上。mems制造涉及各种技术领域的设计,工程和制造专业知识,包括集成电路制造技术,机械工程,材料科学,电气工程,化学和化学工程。这种多学科方法对于MEMS技术的发展和发展至关重要。流体工程,光学,仪器和包装等其他领域在MEMS设备和系统的制造中也起着重要作用。MEMS设备通常是使用半导体制造工艺制成的,类似于综合电路(ICS)的生产(Torkashvand 2024; Mohd et al。2020; Dibyendu 2015)。MEMS设备的制造涉及多个关键步骤,包括设计,材料选择,晶圆处理和包装,这些步骤是微系统技术的子集(MST)(Senturia 2002; Maluf and Williams 2004)。
圣约瑟夫大学坐落在充满活力的班加罗尔市,自 1882 年成立以来一直是耶稣会教育的卓越典范。该机构最初由巴黎外方传教团创立,后来由耶稣会管理,拥有悠久的历史,以对学术严谨和社会责任的承诺为特点。该大学的发展以其进步的里程碑为标志,例如 1986 年成为卡纳塔克邦第一所开设研究生课程的学院,1988 年建立研究中心,2005 年获得学术自主权。它的进步最终于 2022 年 7 月 2 日获得大学地位,并于 2022 年 9 月 27 日由印度总统 Smt. Droupadi Murmu 正式揭幕,成为印度第一所公私合作大学。在圣约瑟夫,我们为营造一种既能培养学术卓越又能培养个人成长的环境而感到自豪。在致力于教学和研究的杰出教师的支持下,我们的学生一直名列印度的佼佼者之列。校园内拥有多个跨学科的卓越、创新和创造力中心。我们强调“Fide et Labore”(信仰与辛劳)的指导理念,努力培养不仅知识渊博,而且富有同情心和热情的领导者,以在所选领域产生积极影响。我们的承诺延伸到我们社区的每一位成员,特别是那些最弱势的群体。我们邀请您加入我们这一崇高的事业,为圣约瑟夫大学的丰富遗产做出贡献并受益匪浅,在这里,教育超越传统界限,培养完整的人。