我们提出了一个二维硬核环路模型,是一种在Berezinskii-kosterlitz-无用的过渡时期出现的渐近自由质量连续性量子场理论的一种方式。无需微调,我们的模型可以在接近相变时在大规模阶段重现经典晶格XY模型的通用级尺度函数。这是通过在热力学极限下降低回路配置空间中的fock-vacuum位点的散发性来实现的。与传统的XY模型相比,在Berezinskii-Kosterlitz上的某些通用量在我们的模型中显示出较小的有限尺寸效应。我们的模型是欧几里得时空中渐近自由质量量子场理论的Qubit正则化的一个典型例子,并有助于了解如何在不进行微调的情况下作为分离的固定点上的相关扰动而出现渐近自由。
我们为不依赖于人类反馈的大型语言模型(LLMS)提出了一种新颖的增强学习(RL)框架。相反,我们的方法使用模型本身中的交叉注意信号来获得自我监督的奖励,从而指导对模型策略的迭代微调。通过分析模型在生成过程中如何“参加”输入提示,我们构建了及时的覆盖,重点和连贯性的度量。然后,我们使用这些措施来对候选响应进行排名或评分,提供了奖励信号,鼓励模型产生良好的一致,主题文本。在与标准策略梯度方法的经验比较和合成偏好模型的RL微调中,我们的方法在非RL基线的迅速相关性和一致性方面显示出显着的提高。虽然它尚未与完全监督的RLHF系统的性能相匹配,但它突出了使用最小的人类标记来扩展对齐的重要方向。我们提供了详细的分析,讨论潜在的局限性,并概述了将基于跨注意的信号与较少人类反馈相结合的未来工作。
从第一原理的角度来看,基础模型微调(FT)的最强结果是通过相对较高的两阶段训练程序实现的。具体来说,第一次训练某些数据集上的奖励模型(RM)(例如,人类的偏好)在使用它作为向下流增强学习(RL)过程的一部分提供在线反馈之前,而不是通过离线最大可能性估计来直接优化数据集中的策略参数。实际上,从信息理论的角度来看,我们只能通过通过奖励模型来丢失信息,并且不能通过policy采样来培养任何新信息。为了解释这种差异,我们通过理论和经验镜头对RL的价值进行了几个假设。考虑到假设的考虑,我们找到了对解释的最大支持,即在具有一代验证差距的问题上,从偏好数据中学习相对简单的RM(验证者)的易用性结合在一起,再加上下游RL程序的能力,以便在线搜索范围(最佳)的范围(生成器)的范围(生成器)的范围(生成器)的范围(生成器)的范围是最佳的。英尺
假设您有…•数据集d = {(x i,y i)} i = 1 n和n很小(即几次设置)•一个非常大的(数十亿个参数)预训练的语言模型,有两种“学习”
抽象的拉曼光谱学对细菌物种提供了非破坏性和高度敏感的分子见解,使其成为检测,识别和抗生素易感性测试的宝贵工具。然而,由于批量信号的优势和不可控制的分析物的异质性,实现临床相关的准确性,定量数据和可重复性仍然具有挑战性。在这项研究中,我们介绍了一种创新的诊断工具:质子纤维纤维旋转器(P -FS),该工具掺入了与金属特征集成的硝酸纤维素膜,该膜被称为纳米质体 - 增强矩阵,设计用于同时的细菌局限型和检测。我们开发了一种使用光刻造影的等离子阵列图案化硝化膜的方法,然后将其与自定义的纤维旋转器集成。用各种细菌物种(E. Coli 25922,S。金黄色葡萄球菌25923,大肠杆菌MG1655,Brevis和S. Mutans 3065)测试P -FS装置(E. Coli 25922,S。Aureus 25923,E。coli Mg1655),这表明基于其独特的Ramanefingerprints,证明了成功的识别。与等离子体阵列内的区域的细菌界面,在P -FS上,电磁场最浓缩的是最强烈的浓缩(称为纳米质热点)显着提高了敏感性,从而提高了更精确的检测。SERS强度映射使用基于阈值的方法转化为数字信号,以识别和量化细菌分布。鉴于P -FS在日常条件下增强振动签名及其可扩展的制造能力,我们预计纳米质增强的拉曼光谱 - 利用由金属制成的纳米结构(特定的金色和银色)沉积在硝基纤维膜上散布的含量散布的含量,并将其散布在偏心上 - 各种分析物,包括对人类健康至关重要的分析物,其从实验室研究过渡到临床应用的强大潜力。
Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)Ph.D.论文委员会成员:Luofeng Liao,Jiangze Han(不列颠哥伦比亚大学),Tianyu Wang,Aapeli Vuorinen,Madhumitha Shridharan,Jerry Anunrojwong(哥伦比亚商学院),Steven Yin(2022),Sai Ananthanarayananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananananaan lagzi of Turrontanaan lagzi(202222222) Yuan Gao(2022),Jingtong Zhao(2021),Fengpei Li(2021),Kumar Goutam(2020),Shuoguang Yang(2020),Min-Hwan OH(2020),Randy Jia(2020),Randy Jia(2020),Vladlena Powers(2020),vladlena Powers(2020),Zhe liuia liuia liuia(2019年),2019年,2019年(2019年)贝鲁特美国大学),Suraj Keshri(2019),Shuangyu Wang(2018),Francois Fagan(2018),Xinshang Wang(2017)
近年来,NLP模型的快速发展主要是通过Google和多伦多大学研究人员开发的变压器体系结构[2] B。变压器体系结构最初用于翻译语言,但是由于其出色的计算性能(通过并行处理所有输入),而不是先前使用的体系结构,因此在几种情况下已经探索了它。此外,由于它在独特的下游应用程序中取得了成功(文本摘要,自动完成,聊天对话生成等。),多年来NLP模型中的参数数量迅速增加,如图1所示。该图显示了自2017年以来模型大小的演变,从变压器模型开始于2017年6月Google宣布的6500万参数。使用虚线描绘了大于1万亿的型号。我们包含的最大模型可以实现以上的参数大小,因为它们使用稀疏激活的结构,在推断期间,只有LLM的一部分神经元的一部分被激活,而不是全部。但是,它们的广泛采用受到复杂性,沟通成本和培训不稳定性等因素的阻碍[15]。尽管存在这些障碍,但它们的建筑设计应被视为未来模型缩放的有力候选人。此外,诸如GPT-4和Gemini之类的模型以其多模式功能而闻名,这不仅可以处理文本,还可以处理诸如Image,Video和Audio之类的视觉和听觉输入。图1基于参考文献[1]中的信息。
摘要 — 本研究调查了在涉及大型用户组和每个参与者多个会话的因果环境中在线纵向脑电图 (EEG) 运动想象 (MI) 解码中深度学习的持续微调策略。我们是第一个在大型用户组中探索此类策略的人,因为纵向适应通常是在单个受试者环境中使用单一适应策略进行研究的,这限制了推广研究结果的能力。首先,我们研究了不同的微调方法对解码器性能和稳定性的影响。在此基础上,我们集成了在线测试时间适应 (OTTA) 以在部署期间调整模型,补充了先前微调的效果。我们的研究结果表明,基于先前特定于主题的信息连续进行的微调可以提高性能和稳定性,而 OTTA 可以有效地使模型适应连续会话中不断变化的数据分布,从而实现无校准操作。这些结果为纵向在线 MI 解码的未来研究提供了宝贵的见解和建议,并强调了结合领域适应策略对提高实际应用中的 BCI 性能的重要性。临床相关性——我们的研究实现了更稳定、更有效的长期运动想象解码,这对于神经康复和辅助技术至关重要。
* Dirk Bergemann感激地感谢NSF SES 2049754和ONR Muri的财政支持。Alex Smolin在未来的投资(投资D'Avenir)计划(Grant ANR-17-EURE-0010)以及通过人工和自然情报图Toulouse Institute(ANITI)下,感谢法国国家研究局(ANR)的资金。