微通道散热器 (MCHS) 能够通过液体到蒸汽的相变去除极高的热通量,使其适用于各种应用,包括高功率微电子的热管理。然而,随着蒸汽气泡的增大,微通道堵塞会导致流动沸腾不稳定性,阻碍了它们的商业适用性。本研究填补了文献中关于微通道深度对流动沸腾不稳定性的影响的研究空白,包括加热表面温度和压降振荡的幅度,以及它们对传热性能的影响。实验使用介电水在多个平行微通道中沸腾,质量通量为 220 和 320 kg/m²s,壁面热通量范围为 25 kW/m² 至 338 kW/m²。研究了两种不同的 MCHS,它们由无氧铜基板制成,每种 MCHS 包含 44 个平行微通道,标称深度分别为 500 µm 和 1000 µm,标称宽度一致,均为 200 µm。使用基板上嵌入的 T 型热电偶阵列测量温度梯度,从而测量传热系数。研究结果表明,在固定壁热流条件下,增加微通道深度会导致壁温波动幅度显著增加,从而降低传热性能。此外,研究表明压降明显依赖于冷却剂流量和两种微通道尺寸。这项研究为优化 MCHS 设计以增强热管理提供了新的见解,强调了微通道深度在缓解流动沸腾不稳定性以及提高整体传热效率方面的关键作用。
射流冲击冷却被视为高功率电子设备热管理的绝佳选择。然而,它的缺点是高压降损失和远离射流区域的低局部传热系数。尽管据报道回流区是由于夹带而出现的,但是回流尺寸对热行为的影响尚不清楚。在这里,在数值研究中采用带有收敛环形通道的射流冲击散热器,以最大限度地减少微通道中冲击射流带来的不利冷却影响。可实现的 k − ε 湍流模型用于模拟热场和湍流流场(Re = 5,000 至 25,000)。研究发现,小尺度上不同的流动回流区是增强传热速率的原因。虽然在 Re 数较低时,收敛壁面射流冲击散热器的热性能高于其平板壁面散热器,但在 Re 数较高时,热性能结果有利于平板壁面射流冲击散热器。在 Re 数较高时,收敛通道中的流动再循环面积会缩小,因此与平板壁面射流散热器相比,收敛通道的热性能会下降。此外,研究发现,采用更陡的收敛通道会缩小流动再循环区域,导致 Re = 25,000 时压降降低高达 59%。本研究考察了不同 Re 数下流动再循环对射流冲击收敛环形散热器热工水力性能的影响。
摘要:微通道热沉在从不同电子设备的小表面积上去除大量热流方面起着至关重要的作用。近年来,电子设备的快速发展要求这些热沉得到更大程度的改进。在这方面,选择合适的热沉基板材料至关重要。本文采用数值方法比较了三种硼基超高温陶瓷材料(ZrB 2 、TiB 2 和 HfB 2 )作为微通道热沉基板材料的效果。利用有限体积法分析了流体流动和传热。结果表明,对于任何材料,在 3.6MWm -2 时热源的最高温度不超过 355K。结果还表明,HfB 2 和 TiB 2 比 ZrB 2 更适合用作基板材料。通过在热源处施加 3.6 MWm -2 热通量,在具有基底材料 HfB 2 的散热器中获得的最大表面传热系数为 175.2 KWm -2 K -1。
近年来,各种出版物讨论了与微通道壁上尖锐的结构结合使用超声检查以实现快速混合的可能性。用超声操作通道时,锋利的边缘会振动并产生局部声流现象,从而导致流体的混合大大增强。使用低kHz范围内的声频率,波长远大于通道宽度,因此可以假定通道段的统一致动,包括锋利的边缘。在先前的工作中,我们在Comsol多物理学的声学模块中采用了新的声学流界面,以模拟两种相同的流体与不同物种浓度的混合,并在含有锋利的锋利,均匀间隔,均匀间隔,均匀的三角形边缘的2D或3D段中的不同物种浓度。我们的建模管道结合了压力和热雾声的声学流界面与背景流和稀释物种界面的运输以模拟两个不同的物种浓度的额外的层流界面。计算网格需要在锋利的边缘上高度完善,以解决粘性边界层。使用四个研究步骤解决模型,首先解决频域中的声学,然后计算声流流的固定解,层流背景流以及浓度场。
3 • 通过对 0.15 LPM 发酵衍生乙醇进行 500 小时的运行来证明可扩展性。 • 评估使用 TEA 实现 3.0 美元/GGE 喷气混合原料的潜力,并通过 LCA 实现与传统技术相比减少 60% 的二氧化碳排放量。 • 使用制造成本模型来评估增材制造方法的潜在优势 • 执行技术到市场分析以评估对 LanzaTech 乙醇商业平台的适用性和市场可行性
1低碳技术和设备跨学科研究中心,机械与车辆工程学院,荷兰大学,长沙大学410082,中华人民共和国2 Moe动力机械和工程学的主要实验室,机械工程学院,上海jiao jiao tong University,上海何亚大学100094,中华人民共和国4座苏和纳米热流体流动流动技术和能源应用,环境科学与工程学院,苏州科学技术大学,苏州苏州大学,江苏,江苏215009 215009科学学院生物启发材料与界面科学的主要实验室,中国科学院技术与化学技术研究所,中国人民共和国100190
摘要:高热流密度微器件的散热问题已成为迫切需要解决的问题,微通道内的沸腾传热是消除微器件高热负荷的有效方法之一。将图像技术与机器学习技术相结合,为微通道内流型与传热识别提供了一种新方法,利用纹理特征的支持向量机方法成功实现流型识别。为探究微器件内气泡动力学行为与流型,将图像特征与机器学习算法相结合,应用于沸腾流型识别,建立了流型演变与沸腾传热之间的关系,揭示了沸腾传热的机理。
微通道冷却具有出色的传热特性和最佳整合特性。微通道冷却系统通常由许多微米大小的平行通道组成,冷却液通过。这项技术在过去十年中为电子设备的热管理提出了相当大的影响[1]。从近年来微型制动技术的令人难以置信的进步中受益,微通道冷却板可以制造出来,以非常薄且光线底物的微观平行通道。由于这些原因,在高能量物理实验中的粒子探测器的热管理中,微通道冷却已开始考虑[2]。在高能物理实验中,微通道冷却的首次应用是在Na62实验[3]的GigAtracker(GTK)中进行的,其中硅微通道冷却板用于消除60×40 mm 2 GTK模块的电子设备在局部耗散的热量,同时维持40 mm 2 GTK模块,同时在5下进行了0 cy [4] Sensor Dever in Sensor Dever in Sensor Devers [4]。这项技术后来被用于大型强子对撞机美容实验(LHCB)顶点定位器(VELO)升级[6]。也已对爱丽丝内部跟踪系统(ITS)[7,8]的LS2升级进行了广泛的研究。在这项研究中,我们描述了微通道原型的制造过程和压力测试。对爱丽丝的物质预算贡献和高温均匀性的严格要求[9]需要一项深入的研究,而爱丽丝的社区与CERN,Suranaree Technology(SUT),Thai Microelectronics Center(TMEC)(TMEC)和EpletechniquiquefédéraleDeLausanne(Epfl deSanne(Epfl)进行了密切合作。
摘要:提出一种新型交叉肋条微通道(MC-CR)热沉,使流体自旋转。针对100 w/cm 2 的热测试芯片(TTC),将交叉肋条微通道与矩形(MC-R)和水平肋条微通道(MC-HR)热沉进行了比较。结果表明:采用交叉肋条微通道后,热测试芯片的结温为336.49 K,压降为22 kPa。与矩形和水平肋条热沉相比,交叉肋条微通道的冷却能力分别提高了28.6%和14.3%,但压降增加了10.7倍和5.5倍。然后,研究了不同流速下微通道长宽比(λ)的影响,发现长宽比与冷却性能呈非线性关系。为降低压降,对横肋的倾角(α)和间距(S)进行了优化,当α=30°、S=0.1mm、λ=4时,压降由22kPa降至4.5kPa。另外,在相同压降条件下,分析了矩形、交错翅片(MC-SF)、交错肋片(MC-SR)及横肋微通道的散热性能,MC-CR仍具有优越的散热性能。
随着电子设备对冷却系统的需求不断增长,纳米流体-微通道散热器(MCHS)已成为热门话题。然而,解决纳米颗粒沉积问题是将该技术推向工业规模的关键。传统研究侧重于静态纳米流体的化学特性。然而,热物理因素也会影响流动流体的沉积。为了分析直微通道中 Al 2 O 3 -水纳米流体的热物理特性,使用离散相模型(DPM)模拟布朗力。结果表明,布朗运动对颗粒沉积有很大影响。然而,对于 MCHS 中的纳米流体,温度对平均自由程的影响可以忽略不计。沉积速率随颗粒直径的增加而降低,但随速度的增加而降低。这些结果在设计新的微通道结构时具有指导意义,并能提供减少沉积的最佳条件。关键词:纳米流体、MCHS、DPM、沉积非参数