本文介绍了一种静电悬浮器中高速样品检测和位置控制的方法。该算法使用从两个 CCD(电荷耦合器件)相机获取的图像,可以在各种工艺条件下对样品位置进行稳健可靠的检测。结果表明,与 PSD(位置敏感检测器)系统相比,尤其是在恶劣环境和微重力条件下的自主操作期间,该方法有改进。在 7 mm × 7 mm × 7 mm 的悬浮区域内,可以三维方式检测半径为 0.6 mm 至 1.1 mm 的样品的位置,精度为 ± 40µm。两个正交排列的相机以 260px × 260px 的分辨率记录图像,用于每 5 毫秒计算一次位置。还介绍了三个轴的控制模型和相应的位置控制器。该系统在实验室和微重力条件下的落塔、抛物线飞行和 MAPHEUS 探空火箭上成功进行了测试。
加拿大航天局 (CSA) 目前正在开展一项名为“太空健康”的调查,评估太空飞行对心血管功能衰退的影响。该调查使用生物监测器,这是一种可穿戴传感器,可收集脉搏率、血压、呼吸频率、皮肤温度和身体活动水平等数据。调查结果可以支持开发一个自主系统,用于监测未来太空任务中的心血管健康。类似的技术可用于监测地球上人类的心脏健康。
在过去的几十年中,人们对太空环境在微生物遗传和表型变化中的作用的研究兴趣日益浓厚。更具体地说,人们担心宇航员在执行月球及更远太空任务期间的健康会因许多条件的变化而受到损害。这些变化包括细菌生理学变化,这些变化会导致与人类健康直接相关的变化,例如毒性和抗生素耐药性,或生命支持系统的功能变化,例如供水或处理组件中生物膜形成的增加。十多年来,人们一直在研究太空条件对微生物的影响;然而,仍然需要确定微重力的生理效应不仅对细菌生长的影响,而且对可能有助于表型可塑性和微生物适应的不同毒力相关表型的影响。本研究重点是利用 2D 微重力模拟物来解释共生菌大肠杆菌 K12 在模拟微重力条件下生长后的表型变化。利用 2D 回转器,大肠杆菌生长长达 22 天,并用于测量通常与毒力相关的表型变化。测量的表型包括细胞群生长、生物膜发育以及对酸性 pH 和氧化应激的反应。我们的研究结果表明,在酸性条件下,生物膜形成有增强趋势,对氧化应激的抵抗力下降,并且更容易生长。这些结果表明,微重力调节大肠杆菌的适应性和表型可塑性,从而导致毒力发生变化。
摘要 在地球上获得微重力是科学实验以及测试和展示未来航空航天技术(无论是用于太空研究还是工业)的关键组成部分。不幸的是,最优质的解决方案是最昂贵的,而替代方案很少或很难预订。此外,微重力平台的供应商仅集中在少数几个地方,这些地方在地理位置上可能离客户很远——迫使他们应对科学有效载荷国际运输中涉及的复杂物流和监管挑战。因此,可用性、可负担性和较长的交货时间是现有微重力平台的主要问题。然而,很少有人考虑设计和推出一种新的创新型替代微重力平台。随着国际空间站的消亡,一些机构进行了市场分析,以评估私人拥有的亚轨道飞行器或空间站的商业潜力。这些报告似乎表明,微重力的一些应用不需要在太空中进行,可以通过其他方式进行。此外,最近在欧洲各地进行的测试活动表明,滑翔机在一定程度上可以提供许多客户所追求的微重力环境。本研究重点是评估微重力滑翔机飞行的经济可行性,并找出这种新型微重力平台是否有可持续的商业模式。确定了微重力的商业应用,并列出了每种情况下它们在最大允许加速度、可变性和持续时间方面的要求。然后将这些与滑翔机可以提供的进行比较,以确定潜在市场。基于该分析,我们提出了一个基于滑翔机的微重力测试平台和标准化接口,允许以可扩展、分布式和经济可行的方式进行微重力测试,从而为商业 NewSpace 公司和研究实验室随时随地进行具有成本效益的原型测试。我们还讨论了此类平台对降低开发太空探索新技术的成本和风险的潜在影响。关键词:微重力、研究、滑翔机、滑翔机、市场分析、技术
我们发现 [我们的供应商之间] 存在大量批次差异,这给标准化带来了挑战——我们资源最密集的流程涉及类器官的生产”(默克研发科学家)
蒸气压缩循环(VCC)是一项有前途的技术,可用于对未来太空飞行器的制冷需求,因为它们通常很高的冷却COP。然而,由于微重力,在启动过程中液体淹没压缩机的风险。因此,为了更好地为微重力应用制备VCC,了解两相制冷剂对启动过程中重力的依赖性很重要。在这项工作中,在VCC的启动时评估了液态洪水,并考虑了被动压缩机保护的可能性。实验设置具有两种配置。在第一个中,可以在透明管中观察到两相现象,并且可以测试不同的管插入,以作为其作为液体洪水阻塞的有效性。在第二个配置中,可以评估来自商业蒸发器的液体洪水的不同电荷水平。结果显示,管插入对直管中液体洪水的明显影响,发现毛毡管插入最有效地阻碍了流动。蒸发器测试结果还显示了液体洪水参数与电荷水平的密切相关性,并且仅显示出对蒸发器方向的微小依赖性。
有两种方法可用于研究微重力对细胞的影响——使用地球上的模拟微重力 (sim-µG) 或将细胞送入太空 (SPC-µG)。我们最近报告称,人类神经干细胞 (NSC) 在太空中的增殖速度比地球上的地面控制 (GC) NSC 高出七倍。在这里,我们使用延时显微镜确定在 sim-µG 和 SPC-µG 中都有两个细胞亚群,它们以体细胞直径的差异来区分。在 SPC 飞行的 NSC 与 GC 的情况下,直径超过 10 µm 的“大”细胞(归类为大)的比例明显更高,占测量总群体的 81%,而 GC 细胞中“大”NSC 的比例要小得多,为 49.2%。暴露于 sim-µG 后,细胞直径小于 10 µm 的“小” NSC 百分比为 45%,而直径较大的 NSC 数量增加到 55%。相对于在 1G 中维持的对照 NSC,大多数 (72%) 这些细胞是“小”的,而 28% 的 NSC 大于 10 µm。因此,目前的研究表明,SPC-µG 暴露产生的“大” NSC 比例不仅比 GC 细胞大,而且比 sim-µG 处理的细胞大。将 SPC-NSCs 分泌组添加到幼稚 NSC 中会增加增殖和细胞大小。30 小时后,细胞出现不健康形态的迹象,揭示了 SPC_NSC 分泌组的有害影响。
长期的人类空间传播会导致眼睛和大脑的变化,这些空间被称为空间 - 空间相关的神经眼综合征(SANS)。这些变化可能表现为症状的星座,其中可能包括视盘水肿,视神经鞘延伸,脉络膜褶皱,地球量,触角偏移,远视和棉质羊毛斑点。尽管尚不清楚SAN的基础机制,但在微重力诱导的头部液体移位后,贡献者可能包括颅内间质流体积累。对SAN的对策的开发和验证有助于我们对病因的理解,并加速了新技术,包括运动方式,下半身负压套件,静脉大腿袖口和阻抗阈值设备。然而,仍然存在显着的知识差距,包括生物标志物,一组完整的对策和/或治疗方案以及最终可靠的基于地面的类似物,以加速研究。欧洲航天局SANS专家小组的这项审查总结了过去的研究和当前有关SAN,潜在对策和关键知识差距的知识,以进一步我们在人类太空中对SAN的理解,预防和治疗,既可以进行人类空间和未来的外地地面探索。
,但执行也很昂贵。因此,为模拟微重力并创建无容器和非接触空间环境的实验环境是一个紧迫的问题。声学驻波场(ASWF)悬浮的一种解决方案:1 - 4但是,在使用这样的ASWF创建所需的悬浮时,几乎没有关于该空间环境中生物安全关键问题评估的关键问题的报道。鉴于其在其他批准中看到的成功,例如材料制备,声音悬浮(AL)技术显示出在生命科学和生物学中应用的巨大潜力。5利用其非接触式和允许材料运输的特征,6-13该技术可以提供一个无壁,非接触式平台,以允许组装小零件,而不会从容器墙或样品持有人那里进行负面影响。已成功地执行了这种方法的实际应用,例如在药物载荷,诊断和人工启用中。14 - 16 Al Technology在据报道,在生物学研究中,还采用了包括鼠类胚胎干细胞,血细胞和小动物在内的活细胞,包括鼠类胚胎干细胞,血细胞和小动物。但是,迄今为止,关于
以下论文讨论了使用微重力模拟器研究微重力效应的可能方法:随机定位机。此外,该研究旨在验证生物学和机械水平上的RPM性能。测试了RPM,以确保其准确模拟适合平面物的微重力环境,并为了找到最能模拟这种情况的机器的特性。随机定位机的研究和验证对于继续使用至关重要。它将RPM建立为可靠的微重力模拟器,为未来的研究和严格研究为微重力领域提供了科学基础。
