免疫系统是一个复杂的网络,可以保护身体免受病原体的侵害,并降低营养在疾病中起着至关重要的作用。免疫反应的每个组成部分都依赖于某些维生素和矿物质的存在,它们可以单独或组合发挥作用。微量营养素,如维生素 A、B6、B12、C、D 和 E、叶酸、锌、铜、铁和硒,对于最佳免疫功能至关重要。缺乏单个或多种微量营养素会降低免疫系统抵抗病原体的能力。人体肠道是微量营养素吸收和免疫活动的主要场所。微生物群,即居住在肠道中的复杂微生物生态系统,有助于“训练”免疫系统,是免疫发育和功能的关键决定因素。在许多地方和情况下,人们的饮食中微量营养素不足,无法确保足够的免疫反应,从而导致感染、肠道功能障碍以及营养和免疫力恶化的恶性循环。饮食不良和卫生条件差等多种因素会对微生物群产生负面影响,进一步加剧这种恶性循环。研究表明,特定微量营养素和其他干预措施具有某些特定益处。最近的研究结果表明,需要非常早期的干预措施来帮助新生儿形成健康的免疫系统,而微量营养素补充剂可能需要支持老年人的免疫力。尽管如此,进一步的研究对于帮助确定微量营养素干预的最佳时机、剂量和载体以及每个生命阶段的高危人群至关重要,以便在面对健康挑战时最大限度地提高人们的免疫力和恢复力。
• 样本来源 — 从 ≤ 200 mg 的哺乳动物粪便、≤ 250 mg 的土壤和 50 – 100 mg(湿重)的细菌/真菌细胞 2、生物膜和水 3 中有效分离细菌(包括内生孢子)1、真菌、原生动物、藻类、病毒、线粒体和宿主 DNA。• 珠磨系统 — 创新的 ZymoBIOMICS™ 裂解系统可以完全均质化/破坏微生物细胞壁,并准确进行微生物 DNA 分析,无偏差。为确保无偏差裂解,建议使用 ZymoBIOMICS™ 微生物群落标准(见附录 C)校准每个珠磨设备。• DNA 纯度 — 用 ZymoBIOMICS™ 无 DNase/RNase 水洗脱高质量、无抑制剂的 DNA,适用于所有下游应用,包括 PCR 和下一代测序。
糖尿病性肾脏疾病(DKD)是糖尿病发病率和死亡率的主要原因。这是西方国家终末期肾脏疾病(ESKD)的主要原因,并导致多达一半的事件病例[1]。但是,大多数人永远不会到达ESKD,因为它们更有可能死于心血管疾病(CVD)。随着肾功能下降,CVD的风险几乎呈指数增长[2-4]。不管病因如何,慢性肾脏疾病(CKD)进展的主要特征是细胞外基质成分的病理沉积,可以触发肾纤维化并导致ESKD [5]。纤维化芯的主要结构成分是胶原蛋白,纤维化肾脏中最突出的胶原蛋白之一是胶原蛋白III。c3m是胶原蛋白III的降解产物,由基质金属蛋白酶(MMP)-9产生。c3m因此反映了间隙基质中III型胶原蛋白的营业额,可以被视为纤维化活性的标记[6]。研究表明,在DKD [7]中,MMP-9的活动增加,血浆中MMP-9的水平增加是2型糖尿病患者(T2D)患者中微量白蛋白尿的危险因素[8]。尿液中尿液中的C3M水平升高与患有1型糖尿病患者的CKD严重程度有关(T1D)[9],并且与其他CKD队列中疾病的严重程度和进展[6,10]有关。C3M尚未在2型糖尿病和糖尿病肾脏疾病的患者中进行研究。内皮功能障碍和炎症在纤维化的发作和疾病中起重要作用。在这项研究人群中先前报道的数据中,内皮功能障碍和炎症的标志物与CVD和全因凡人造成独立相关[11]。肾脏活检是检测肾纤维化的唯一当前方法。在临床可检测到的肾脏疾病之前可能存在纤维化,因此纤维化生物标志物可能可能被用作一种非侵入性方法,用于较早发现疾病。此外,纤维化生物标记物可用于疾病监测和评估治疗反应。在这项研究中,我们调查了基线时血清和尿液测量的C3M是否与炎症和内皮功能障碍的标记有关,以及在T2D和Microalbuminuria的随访期间,在随访中,这是否是慢性肾脏疾病,CVD事件的发生以及致命性的风险标志。
1 NIHR 南安普敦生物医学研究中心、南安普敦大学医院南安普敦 NHS 基金会信托、南安普敦大学、南安普敦 Tremona Road SO16 6YD、英国;pccalder@soton.ac.uk 2 洛桑大学医院 (CHUV)、洛桑大学、1011 洛桑、瑞士;mette.berger@unil.ch 3 俄勒冈州立大学莱纳斯鲍林研究所生物化学和生物物理系,科瓦利斯,俄勒冈州 97331,美国;adrian.gombart@oregonstate.edu 4 克利夫兰大学医院、凯斯西储大学、11100 Euclid Avenue、克利夫兰,俄亥俄州 44106,美国;grace.mccomsey@uhhospitals.org 5 免疫生物学中心、Blizard 研究所、巴茨和伦敦医学和牙科学院、伦敦玛丽女王大学、伦敦 E1 2AT,英国; a.martineau@qmul.ac.uk 6 格罗宁根大学医学中心内科系,9713 GZ 格罗宁根,荷兰 * 通讯地址:m.eggersdorfer@bluewin.ch
尽管酪氨酸激酶抑制剂 (TKI) 的治疗药物监测 (TDM) 具有改善治疗结果和最大限度降低毒性的巨大潜力,但在肿瘤患者的标准护理中,它尚未常规实施。TKI 是 TDM 的完美候选药物,因为它们的治疗窗口相对较小,药代动力学在不同患者之间的差异较大,并且药物浓度与疗效之间存在相关性。此外,大多数可用的 TKI 都容易受到各种药物相互作用的影响,因此可以通过 TDM 检查药物依从性。通过传统静脉采血获得的血浆是 TKI 的 TDM 标准基质。然而,使用血浆会带来一些与采样和稳定性相关的挑战。使用干血微量样本可以克服这些限制。通过手指刺破采集样本的侵入性最小,而且方便简单,患者可以在家中自行采样。小样本量的采集对于儿科人群或药代动力学研究尤其重要。此外,使用干燥基质可提高化合物的稳定性,从而使样品的运输和储存更加方便且经济高效。在本综述中,我们重点介绍了用于 TKI 定量的不同干血微量样本方法。尽管干血微量采样具有许多优点,但定量分析也存在一些特定的困难。讨论了基于微量采样的方法的不同方法学方面,并将其应用于 TKI 的 TDM。我们重点关注样品制备、分析、内部标准、样品稀释、外部质量控制、干血斑特定验证参数、稳定性和血液到血浆的转化方法。偏差血细胞比容值对定量结果的各种影响将在单独的部分中讨论,因为这是一个关键问题,无疑是干血微量样本分析中最广泛讨论的问题。最后,讨论了在现实家庭采样环境中使用微量样本进行 TDM 的适用性和可行性。
该系统可执行复杂的点胶模式,点胶线的宽度不同,液滴大小和速度可即时改变。它在一秒钟内可以点胶数百次,并且每滴点胶的重复精度非常高,粘度可达 8,000 mPas。
Ryan P. Fitzgerald 1、Bradley K. Alpert 2、Daniel T. Becker 3、Denis E. Bergeron 1、Richard M. Essex 1、Kelsey Morgan 2,3、Svetlana Nour 1、Galen O'Neil 2、Dan R. Schmidt 2、Gordon A. Shaw 1、Daniel Swetz 2、R. Michael Verkouteren 1 和 Daikang Yan 2,3 1 美国国家标准与技术研究所,马里兰州盖瑟斯堡 20899,美国 2 美国国家标准与技术研究所,科罗拉多州博尔德 80305,美国 3 科罗拉多大学博尔德分校,科罗拉多州博尔德 80309,美国 ryan.fitzgerald@nist.gov bradley.alpert@nist.gov dan.becker@nist.gov denis.bergeron@nist.gov richard.essex@nist.gov kelsey.morgan@nist.gov svetlana.nour@nist.gov galen.oneil@nist.gov dan.schmidt@nist.gov gordon.shaw@nist.gov daniel.swetz@nist.gov r.verkouteren@nist.gov daikang.yan@nist.gov 我们提出了一种新的范例,用于对每单位质量溶液中的放射性核素活度 (Bq/g) 进行初步标准化。两个关键的启用功能是使用芯片级亚开尔文微量热仪进行 4π 衰减能谱测定和使用静电力平衡通过重量法喷墨分配直接实现质量。传统的可追溯性通常依赖于单放射性核素样品的化学分离、4π积分计数和其他光谱法来验证纯度,而本文描述的系统具有 4π计数效率和光谱分辨率,足以一次识别同一样品中的多种放射性核素。这使得混合放射性核素样品的活度浓度能够得到初步标准化。除了计量学之外,这种能力的主要优势在于环境和法医样品的分析,目前多核素样品的定量受到干扰,而这种定量分析可以实现。这可以在不需要化学分离或效率示踪剂的情况下实现,从而大大减少时间、放射性废物和由此产生的测量不确定性。关键词:α;β;低温探测器;质量计量学;微量热计;放射性;放射性核素计量学;跃迁边缘传感器。接受日期:2021 年 12 月 5 日 出版日期:2022 年 2 月 24 日 https://doi.org/10.6028/jres.126.048
矩阵辅助激光解吸电离(MALDI)是一种在蛋白质组学和代谢组学生物学研究中常用的软电离质谱(MS)的一种形式[1-3]。在没有自动进料器的情况下并行快速处理多个样本的能力使其适合于高通量和单细胞应用[4-6]。该方法的关键是使用激光器中的能量促进离子物种产生的矩阵或工程底物[7,8]。底物的特性,包括其化学,电导率和微图像冲击样品电离效率,从而使测量敏感性[8-11]。例如,微米级井可用于隔离不同组成样品,因此可以分别分析它们[12-14]。井阵列也与活动[15,16]或被动加载技术[12,17]兼容,以简化样品的准备。但是,MALDI-MS需要在分析之前将样品干燥。当液滴在平坦的表面上干燥时,由于咖啡环效应,它们倾向于分配有关周长的分析物[18,19]。类似的过程发生在圆柱井中,导致沿周围的降水[20,21],在该井中,由于壁被激光闭塞而抑制信号。两种情况下的结果均降低了灵敏度和由于样本斑点不均匀性而引起的测量变异性增加[18,22]。
文献中用于微无人机检测的大多数雷达系统基于频率调制连续波形(FMCW)雷达[8-11],并且使用Pulse-Doppler(PD)雷达在系统上的作品很少。PD雷达具有相对较高的发射功率以及长时间的工作范围。在本文中,我们提出了一种形状辅助目标检测方法,用于使用PD架构进行微型无人机监视雷达,以减轻地面上高散射点引起的错误警报。根据目标测量和基于HU矩的形状提取方法,提出的分割阈值选择方法组成了分割阈值选择方法。由作者的研究小组开发的PD雷达系统验证了所提出的方法的性能,显示出可行性在减轻微无散检测中的剪切器引起的虚假警报方面具有良好的可行性。
摘要在这项工作中,我们显示了使用第二代3D圆柱形微型探测器的低能质子束对具有治疗质量质量的低能质子束的测量。传感器属于基于硅的新型3D微型探测器设计的改进版本,其在西班牙的国家微电子中心(IMB-CNM,CSIC)制造的电极刻在硅内部。使用直径25μm的准螺旋电极和硅体积内20μm的深度使用了一种新的微技术,从而产生了良好的圆柱辐射敏感性。在国家加速器中心(西班牙CNA)的回旋子的18 MeV质子梁线上测试了这些探测器。它们被组装成内部的低噪声读数电子设备,以治疗等效的功能率评估其性能。微量测量光谱,这与沿Bragg曲线的不同深度相对应。在硅中的实验y f值从远端边缘(27.4±2.3)的入口处(27.4±2.3)kevμm -1在远端边缘(27.4±2.3)的入口中(在(27.4±2.3)的入口中。脉冲高能光谱与蒙特卡洛模拟进行了交叉检查,并获得了出色的一致性。这项工作证明了第二代3D-微型估计器的能力,以与质子治疗中临床中心中使用的速率相同的流量速率评估准确的显微标准分布。
