1. 将 5 ml 血液收集到含有 EDTA 的真空采血管 (Becton Dickinson) 中并混合。2. 用溶液 1 (10 mM Tris pH 7.6;10 mM KCl;10 mM MgCl2) 定容至 10 ml。3. 加入 120 μl Nonidet P40 (BDH) 以裂解细胞。颠倒几次以充分混合。4. 以 2000 rpm 的速度旋转核沉淀 10 分钟。5. 倒出上清液,不要移出沉淀。沉淀可以冷冻保存。6. 将沉淀轻轻地重新悬浮在 800 μl 溶液 2 (10 mM Tris pH 7.6;10 mM KCl;10 mM MgCl2;0.5 M NaCl;0.5% SDS;2 mM EDTA) 中。溶液 2 会裂解细胞核,所以要小心不要剪切 DNA。转移到 1.5 ml 的微量离心管中。7. 加入 400 μl 蒸馏苯酚(饱和于 1 M Tris pH 8.0)并混匀。8. 以 12000 rpm 的速度离心 1 分钟。将上层相转移到干净的微量离心管中。不要担心转移少量界面。9. 加入 200 μl 苯酚和 200 μl 氯仿:异戊醇(24:1)。颠倒混匀。10. 以 12000 rpm 的速度旋转 1 分钟。将上层相转移到干净的微量离心管中。11. 加入 700 μl 氯仿:异戊醇并按上述方法提取。12. 将上层水相转移到一个小的干净容器中。避免去除界面。加入 2 倍体积的冰冷乙醇并混合以沉淀 DNA*。 13. 使用密封的吸液管尖端将 DNA 纤维转移到含有 1 ml 70% 乙醇的微量离心管中。充分混合以清洗 DNA。14. 全速旋转 5 分钟。倒掉乙醇并在真空吸尘器中干燥沉淀物。在 65°C 的无菌水中重新悬浮 DNA。不要过度干燥基因组 DNA,否则将很难重新悬浮。
本手册旨在总结多年来作为 NIST/NCI 微量营养素测量质量保证计划的一部分,用于测量血清和血浆中选定的脂溶性和水溶性维生素、类胡萝卜素、奥替普拉和甘草次酸的方法开发和改进。本手册是
研究人员解释说,遗传易感性、各种环境因素、久坐的生活方式、不健康的饮食和肥胖都是导致该疾病的风险因素。之前发表的研究表明,微量营养素在 2 型糖尿病的发展中起着关键作用,因为它可能影响葡萄糖代谢和胰岛素信号通路。
近期和长期气候变化和变化的影响将对粮食系统(包括农业生产力和供应链)产生广泛影响。全球变暖预计将改变农作物种植的类型和地点,并产生足够的收益能力到2050年喂养100亿的人口。气候投影模型表明,更多的大气二氧化碳浓度可能会挑战一些农作物,尤其是在热带地区种植的玉米,以保持当前的产量。3各种建模研究还表明,随着大气二氧化碳浓度升高,小麦,大米,土豆和大麦等农作物可能会失去其营养品质 - 蛋白质和微量营养素含量的下降 - 大量消耗的植物性食品。这些营养下降可能会加剧已经令人震惊的全球健康危机 - 超过一半以下的五岁儿童在铁,锌或维生素A中的微量营养素不足,而生殖年龄的三分之二的妇女是三分之二的妇女,在或至少是铁,锌,锌,锌,和构造的妇女。
营养压力导致全球 20 多亿人口营养不良。要么是我们商业化种植的谷物、豆类和油籽作物缺乏必需营养素,要么是这些作物生长的土壤中矿物质含量越来越少。不幸的是,我们的主要粮食作物缺乏正常人体生长所需的微量营养素。为了克服营养不足的问题,应更加重视鉴定与必需营养素有关的基因/数量性状位点 (QTL),并通过标记辅助育种将其成功部署到优良育种品系中。本文介绍了主要粮食作物中蛋白质含量、维生素、常量营养素、微量营养素、矿物质、油含量和必需氨基酸的已鉴定 QTL 的信息。这些 QTL 可用于开发营养丰富的作物品种。基因组编辑技术可以快速精确地修改基因组,并直接丰富优良品种的营养状况,在应对营养不良的挑战方面具有光明的未来。
稻米是亚洲许多社区非常重要的作物。它不仅是大多数人的主食,也是亚洲文化和社会的重要组成部分。稻米生产大多仍由自给自足的小农户负责。农村地区大多数农业劳动力的生计都与稻米生产或多或少地相关。稻米的品种繁多,从旱地稻米到可以在沿海地区种植的品种。从印度到印度尼西亚,从中国到菲律宾,很容易找到 40,000 多个稻米品种,全球 90% 以上的稻米是在亚洲生产和消费的。尽管米饭被视为一种营养丰富的食物,但它缺乏维生素 A 或其前体 β-胡萝卜素等微量营养素。因此,人们通常将米饭与蔬菜或肉类蛋白质等配菜一起食用,以补充富含米饭的饮食中微量营养素的缺乏。 1999 年,一群由 Ingo Potrykus 博士领导的欧洲科学家试图通过开发含有 β-胡萝卜素的转基因水稻来改变这一现状,
1 型糖尿病 (T1D) 患者的死亡主要与发展为肾病这一主要的微血管并发症有关 [1]。糖尿病肾病 (DN) 的发病率呈上升趋势,这表明因糖尿病导致终末期肾病 (ESRD) 的患者数量不断增加 [2]。微量白蛋白尿 (MA) 是临床可检测的糖尿病肾病 (DN) 的早期指标。患有 T1D 的年轻成人和儿童中 MA 的患病率为 7%~20% [3,4]。然而,微量白蛋白尿的预测价值有限。研究表明,正常范围的白蛋白尿并不能排除糖尿病儿童肾病 [5]。一些没有微量白蛋白尿的患者也会发展为晚期肾脏病理改变,这意味着微量白蛋白尿可能不是早期发现糖尿病肾病的最佳标志物 [5]。这些患者的 ESRD 发病率比无糖尿病的正常白蛋白尿个体高 7.8 倍 [6]。另一方面,基因研究为罹患 DN 高风险的患者提供了宝贵的信息。在出现白蛋白尿之前,存在可导致肾脏疾病发展的基因突变。通过识别这些因素,我们可以减缓易感人群肾脏损害的进展。可能导致患 DN 的候选基因之一是血管紧张素转换酶 (ACE)、血管紧张素 II 受体 1 型 (AGTR1) 和亚甲基四氢叶酸还原酶 (MTHFR)。激活的肾内肾素-血管紧张素系统被认为是 DN 发病机制中的关键因素,因为它在葡萄糖代谢、调节血压和液体稳态中发挥作用。ACE、血管紧张素原 (Atg) 和 AGTR1 是 RAS 的一部分。 ACE 插入/缺失多态性可解释循环 ACE 水平变异的近一半[7]。ACE I/D 多态性调节 ACE 活性并在 DN 的发展和进展中发挥作用[8]。I/D ACE 基因多态性是影响糖尿病患者心血管并发症和 DN 发展的独立因素[8]。AGTR1 基因调节醛固酮的分泌,并对血压控制和心血管系统的工作产生影响。ACE 插入/缺失和 AGTR1 的一些作用协同作用,增加心血管疾病 (CVD) 的风险[9]。参与 DN 发展的表观遗传机制的遗传变异是 MTHFR 基因的多态性。在糖尿病患者中,低叶酸和升高同型半胱氨酸与糖尿病中的内皮功能障碍和微血管并发症有关[10,11]。 MTHFR 677C -T 基因的多态性与糖尿病患者的同型半胱氨酸升高和微血管并发症有关 [ 12 ]。本研究的目的是检查患有和不患有 MA 的 T1D 青少年之间的临床和实验室差异。其次,我们检查了 ACE、AGTR1、和 MTHFR 基因多态性在 1 型糖尿病患者中分为两组
1。引言现代农业必须继续养活不断扩大的世界人口。为了支持不断增长的人群,已经采用了最大化生物量生产的策略。著名的例子之一是“绿色革命”,它显着提高了农作物的产量来消除饥饿。除了生物质的产量外,作物的营养价值是提供适当营养的另一个重要考虑因素。除了热量摄入量和诸如N,P,K和微量营养素之类的大量营养素外,Zn人类还依靠食品作物来获得某些微量营养素。由于饮食不足的微量营养素(例如矿物质和维生素)被视为“隐藏饥饿”而导致的营养不良。根际是植物根部与土壤之间的重要界面,当考虑植物与有益细菌之间的相互作用时,有助于可持续农业。大约35年前,克洛珀首先描述了促进植物生长的根瘤菌(PGPR)在植物生长和防御中的作用[1]。PGPR与植物根有关,在直接或间接促进植物生长中起着重要作用。生物铜质化和植物刺激是植物生长的直接启动子机制,可同时最大程度地减少化学肥料的使用并促进植物生长,以及具有生物防治和植物刺激性能的细菌,以增强植物中养分和疾病的控制。当前的情况例证了使用这些PGPR的植物 - 微生物相互作用领域的工作,该植物 - 微生物相互作用的工作重点是钉书钉作物的生物化。谁承认对人体正常功能至关重要的微量营养素,即。硒(SE),铁(Fe)和锌(Zn),并为PGPR介导的生物强化提供了很大一部分[2]。小麦是碳水化合物的重要来源。在全球范围内,当小麦作为全谷物食用时,它是人类食品中蔬菜蛋白的主要来源,是多种营养素和饮食纤维的来源[3]。在100克中,小麦提供了327公斤的食物能量,是多种必需营养素的丰富来源,例如蛋白质,饮食纤维,锌,铁,锰,磷和烟酸。几种B维生素和其他饮食矿物质的含量很大。小麦是13%的水,71%的碳水化合物和1.5%的脂肪。其13%的蛋白质含量主要是面筋。根据新蛋白质
摘要 我们之前已表明,2 周的严格食物限制 (sFR) 饮食(对照 (CT) 饮食的 40% 热量摄入)上调了雌性 Fischer 大鼠的循环肾素血管紧张素 (Ang) 系统 (RAS),这很可能是由于血浆容量下降所致。在本研究中,我们调查了中枢 RAS 在与 sFR 相关的平均动脉压 (MAP) 和心率 (HR) 失调中的作用。虽然 sFR 降低了基础平均 MAP 和 HR,但对脑室 (icv) 微量注射 Ang-[1-8] 的升压反应幅度不受影响;然而,在 sFR 大鼠中微量注射 Ang-[1-8] 26 分钟后 HR 降低了 57 ± 13 bpm,微量注射氯沙坦后也观察到了类似的反应。下丘脑中 Ang-[1-8] 的主要分解代谢途径是通过 Ang-[1-7];然而,CT 动物和 sFR 动物之间 Ang-[1-8] 合成或降解的速率没有差异。虽然 sFR 对穹窿下器 (SFO)、终板血管器 (OVLT) 和第三脑室旁前腹侧正中视前核 (MnPO) 中的 AT 1 R 结合没有影响,但下丘脑旁核 (PVN) 中的配体结合增加了 1.4 倍。这些发现表明,sFR 通过增加 PVN 中的 AT 1 R 表达来刺激中枢 RAS,作为对基础 MAP 和 HR 降低的补偿反应。这些发现对于经历 sFR 时期的人们具有重要意义,因为激活的中枢 RAS 可能会增加他们患上涉及 RAS 过度激活的疾病(包括肾脏和心血管疾病)的风险。
《太平洋 2050 战略》设想建立一个具有韧性的太平洋地区,其特点是和平、和谐、安全、社会包容和繁荣,确保所有太平洋人民都能过上自由、健康和富有成效的生活。然而,该战略没有明确提到粮食安全——这是所有人生存和福祉的关键要素。充足的营养对身体健康、智力发展和经济生产力至关重要,营养不足和营养不良会导致长期的健康和经济挑战。肥胖(超重)、营养不足(发育迟缓和消瘦)和微量营养素缺乏的三重营养不良负担正在席卷整个太平洋岛屿。肥胖、发育迟缓和微量营养素缺乏的发生率是全球最高的,与增加饮食多样性相关的营养敏感型农业至关重要。COVID-19 疫情凸显了当地粮食生产的重要性,强调了传统农业系统在确保粮食安全方面的作用。农民及其传统做法对于实现该战略的愿景至关重要。